
题目描述
我们有两个长度相等且不为空的整型数组 nums1
和 nums2
。在一次操作中,我们可以交换 nums1[i]
和 nums2[i]
的元素。
- 例如,如果
nums1 = [1,2,3,8]
, nums2 =[5,6,7,4]
,你可以交换 i = 3
处的元素,得到 nums1 =[1,2,3,4]
和 nums2 =[5,6,7,8]
。
返回 使 nums1
和 nums2
严格递增 所需操作的最小次数 。
数组 arr
严格递增 且 arr[0] < arr[1] < arr[2] < ... < arr[arr.length - 1]
。
注意:
示例 1:
输入: nums1 = [1,3,5,4], nums2 = [1,2,3,7]
输出: 1
解释:
交换 A[3] 和 B[3] 后,两个数组如下:
A = [1, 3, 5, 7] , B = [1, 2, 3, 4]
两个数组均为严格递增的。
示例 2:
输入: nums1 = [0,3,5,8,9], nums2 = [2,1,4,6,9]
输出: 1
提示:
2 <= nums1.length <= 105
nums2.length == nums1.length
0 <= nums1[i], nums2[i] <= 2 * 105
解法
方法一:动态规划
定义 \(a\), \(b\) 分别表示使得下标 \([0..i]\) 的元素序列严格递增,且第 \(i\) 个元素不交换、交换的最小交换次数。下标从 \(0\) 开始。
当 \(i=0\) 时,有 \(a = 0\), \(b=1\)。
当 \(i\gt 0\) 时,我们先将此前 \(a\), \(b\) 的值保存在 \(x\), \(y\) 中,然后分情况讨论:
如果 \(nums1[i - 1] \ge nums1[i]\) 或者 \(nums2[i - 1] \ge nums2[i]\),为了使得两个序列均严格递增,下标 \(i-1\) 和 \(i\) 对应的元素的相对位置必须发生变化。也就是说,如果前一个位置交换了,那么当前位置不交换,因此有 \(a = y\);如果前一个位置没有交换,那么当前位置必须交换,因此有 \(b = x + 1\)。
否则,下标 \(i-1\) 和 \(i\) 对应的元素的相对位置可以不发生变化,那么有 \(b = y + 1\)。另外,如果满足 \(nums1[i - 1] \lt nums2[i]\) 并且 \(nums2[i - 1] \lt nums1[i]\),那么下标 \(i-1\) 和 \(i\) 对应的元素的相对位置可以发生变化,此时 \(a\) 和 \(b\) 可以取较小值,因此有 \(a = \min(a, y)\) 和 \(b = \min(b, x + 1)\)。
最后,返回 \(a\) 和 \(b\) 中较小值即可。
时间复杂度 \(O(n)\),空间复杂度 \(O(1)\)。
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution:
def minSwap(self, nums1: List[int], nums2: List[int]) -> int:
a, b = 0, 1
for i in range(1, len(nums1)):
x, y = a, b
if nums1[i - 1] >= nums1[i] or nums2[i - 1] >= nums2[i]:
a, b = y, x + 1
else:
b = y + 1
if nums1[i - 1] < nums2[i] and nums2[i - 1] < nums1[i]:
a, b = min(a, y), min(b, x + 1)
return min(a, b)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public int minSwap(int[] nums1, int[] nums2) {
int a = 0, b = 1;
for (int i = 1; i < nums1.length; ++i) {
int x = a, y = b;
if (nums1[i - 1] >= nums1[i] || nums2[i - 1] >= nums2[i]) {
a = y;
b = x + 1;
} else {
b = y + 1;
if (nums1[i - 1] < nums2[i] && nums2[i - 1] < nums1[i]) {
a = Math.min(a, y);
b = Math.min(b, x + 1);
}
}
}
return Math.min(a, b);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public:
int minSwap(vector<int>& nums1, vector<int>& nums2) {
int a = 0, b = 1, n = nums1.size();
for (int i = 1; i < n; ++i) {
int x = a, y = b;
if (nums1[i - 1] >= nums1[i] || nums2[i - 1] >= nums2[i]) {
a = y, b = x + 1;
} else {
b = y + 1;
if (nums1[i - 1] < nums2[i] && nums2[i - 1] < nums1[i]) {
a = min(a, y);
b = min(b, x + 1);
}
}
}
return min(a, b);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | func minSwap(nums1 []int, nums2 []int) int {
a, b, n := 0, 1, len(nums1)
for i := 1; i < n; i++ {
x, y := a, b
if nums1[i-1] >= nums1[i] || nums2[i-1] >= nums2[i] {
a, b = y, x+1
} else {
b = y + 1
if nums1[i-1] < nums2[i] && nums2[i-1] < nums1[i] {
a = min(a, y)
b = min(b, x+1)
}
}
}
return min(a, b)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | function minSwap(nums1: number[], nums2: number[]): number {
let [a, b] = [0, 1];
for (let i = 1; i < nums1.length; ++i) {
let x = a,
y = b;
if (nums1[i - 1] >= nums1[i] || nums2[i - 1] >= nums2[i]) {
a = y;
b = x + 1;
} else {
b = y + 1;
if (nums1[i - 1] < nums2[i] && nums2[i - 1] < nums1[i]) {
a = Math.min(a, y);
b = Math.min(b, x + 1);
}
}
}
return Math.min(a, b);
}
|