768. 最多能完成排序的块 II
题目描述
给你一个整数数组 arr
。
将 arr
分割成若干 块 ,并将这些块分别进行排序。之后再连接起来,使得连接的结果和按升序排序后的原数组相同。
返回能将数组分成的最多块数?
示例 1:
输入:arr = [5,4,3,2,1] 输出:1 解释: 将数组分成2块或者更多块,都无法得到所需的结果。 例如,分成 [5, 4], [3, 2, 1] 的结果是 [4, 5, 1, 2, 3],这不是有序的数组。
示例 2:
输入:arr = [2,1,3,4,4] 输出:4 解释: 可以把它分成两块,例如 [2, 1], [3, 4, 4]。 然而,分成 [2, 1], [3], [4], [4] 可以得到最多的块数。
提示:
1 <= arr.length <= 2000
0 <= arr[i] <= 108
解法
方法一:单调栈
根据题目,我们可以发现,从左到右,每个分块都有一个最大值,并且这些分块的最大值呈单调递增(非严格递增)。我们可以用一个栈来存储这些分块的最大值。最后得到的栈的大小,也就是题目所求的最多能完成排序的块。
时间复杂度 $O(n)$,其中 $n$ 表示 $arr$ 的长度。
1 2 3 4 5 6 7 8 9 10 11 12 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|