762. 二进制表示中质数个计算置位
题目描述
给你两个整数 left
和 right
,在闭区间 [left, right]
范围内,统计并返回 计算置位位数为质数 的整数个数。
计算置位位数 就是二进制表示中 1
的个数。
- 例如,
21
的二进制表示10101
有3
个计算置位。
示例 1:
输入:left = 6, right = 10 输出:4 解释: 6 -> 110 (2 个计算置位,2 是质数) 7 -> 111 (3 个计算置位,3 是质数) 9 -> 1001 (2 个计算置位,2 是质数) 10-> 1010 (2 个计算置位,2 是质数) 共计 4 个计算置位为质数的数字。
示例 2:
输入:left = 10, right = 15 输出:5 解释: 10 -> 1010 (2 个计算置位, 2 是质数) 11 -> 1011 (3 个计算置位, 3 是质数) 12 -> 1100 (2 个计算置位, 2 是质数) 13 -> 1101 (3 个计算置位, 3 是质数) 14 -> 1110 (3 个计算置位, 3 是质数) 15 -> 1111 (4 个计算置位, 4 不是质数) 共计 5 个计算置位为质数的数字。
提示:
1 <= left <= right <= 106
0 <= right - left <= 104
解法
方法一:数学 + 位运算
题目中 $left$ 和 $right$ 的范围均在 $10^6$ 以内,而 $2^{20} = 1048576$,因此,二进制中 $1$ 的个数最多也就 $20$ 个,而 $20$ 以内的质数有 [2, 3, 5, 7, 11, 13, 17, 19]
。
我们枚举 $[left,.. right]$ 范围内的每个数,统计其二进制中 $1$ 的个数,然后判断该个数是否为质数,如果是,答案加一。
时间复杂度 $O(n\times \log m)$。其中 $n = right - left + 1$,而 $m$ 为 $[left,.. right]$ 范围内的最大数。
1 2 3 4 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 |
|
1 2 3 4 5 6 7 8 9 10 |
|