题目描述
有 n
个网络节点,标记为 1
到 n
。
给你一个列表 times
,表示信号经过 有向 边的传递时间。 times[i] = (ui, vi, wi)
,其中 ui
是源节点,vi
是目标节点, wi
是一个信号从源节点传递到目标节点的时间。
现在,从某个节点 K
发出一个信号。需要多久才能使所有节点都收到信号?如果不能使所有节点收到信号,返回 -1
。
示例 1:
输入:times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
输出:2
示例 2:
输入:times = [[1,2,1]], n = 2, k = 1
输出:1
示例 3:
输入:times = [[1,2,1]], n = 2, k = 2
输出:-1
提示:
1 <= k <= n <= 100
1 <= times.length <= 6000
times[i].length == 3
1 <= ui, vi <= n
ui != vi
0 <= wi <= 100
- 所有
(ui, vi)
对都 互不相同(即,不含重复边)
解法
方法一:朴素 Dijkstra 算法
我们定义 $\textit{g}[u][v]$ 表示节点 $u$ 到节点 $v$ 的边权,如果节点 $u$ 到节点 $v$ 之间没有边,则 $\textit{g}[u][v] = +\infty$。
我们维护一个数组 $\textit{dist}$,其中 $\textit{dist}[i]$ 表示节点 $k$ 到节点 $i$ 的最短路径长度。初始时,我们将 $\textit{dist}[i]$ 全部初始化为 $+\infty$,但 $\textit{dist}[k - 1] = 0$。定义一个数组 $\textit{vis}$,其中 $\textit{vis}[i]$ 表示节点 $i$ 是否被访问过,初始时,我们将 $\textit{vis}[i]$ 全部初始化为 $\text{false}$。
我们每次找到未被访问的距离最小的节点 $t$,然后以节点 $t$ 为中心进行松弛操作,即对于每个节点 $j$,如果 $\textit{dist}[j] > \textit{dist}[t] + \textit{g}[t][j]$,则更新 $\textit{dist}[j] = \textit{dist}[t] + \textit{g}[t][j]$。
最后,我们返回 $\textit{dist}$ 中的最大值,即为答案。如果答案为 $+\infty$,则说明存在无法到达的节点,返回 $-1$。
时间复杂度 $O(n^2 + m)$,空间复杂度 $O(n^2)$。其中 $n$ 和 $m$ 分别为节点数和边数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution:
def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int:
g = [[inf] * n for _ in range(n)]
for u, v, w in times:
g[u - 1][v - 1] = w
dist = [inf] * n
dist[k - 1] = 0
vis = [False] * n
for _ in range(n):
t = -1
for j in range(n):
if not vis[j] and (t == -1 or dist[t] > dist[j]):
t = j
vis[t] = True
for j in range(n):
dist[j] = min(dist[j], dist[t] + g[t][j])
ans = max(dist)
return -1 if ans == inf else ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | class Solution {
public int networkDelayTime(int[][] times, int n, int k) {
int[][] g = new int[n][n];
int[] dist = new int[n];
final int inf = 1 << 29;
Arrays.fill(dist, inf);
for (var e : g) {
Arrays.fill(e, inf);
}
for (var e : times) {
g[e[0] - 1][e[1] - 1] = e[2];
}
dist[k - 1] = 0;
boolean[] vis = new boolean[n];
for (int i = 0; i < n; ++i) {
int t = -1;
for (int j = 0; j < n; ++j) {
if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
t = j;
}
}
vis[t] = true;
for (int j = 0; j < n; ++j) {
dist[j] = Math.min(dist[j], dist[t] + g[t][j]);
}
}
int ans = 0;
for (int x : dist) {
ans = Math.max(ans, x);
}
return ans == inf ? -1 : ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | class Solution {
public:
int networkDelayTime(vector<vector<int>>& times, int n, int k) {
const int inf = 1 << 29;
vector<vector<int>> g(n, vector<int>(n, inf));
for (const auto& e : times) {
g[e[0] - 1][e[1] - 1] = e[2];
}
vector<int> dist(n, inf);
dist[k - 1] = 0;
vector<bool> vis(n);
for (int i = 0; i < n; ++i) {
int t = -1;
for (int j = 0; j < n; ++j) {
if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
t = j;
}
}
vis[t] = true;
for (int j = 0; j < n; ++j) {
dist[j] = min(dist[j], dist[t] + g[t][j]);
}
}
int ans = ranges::max(dist);
return ans == inf ? -1 : ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 | func networkDelayTime(times [][]int, n int, k int) int {
const inf = 1 << 29
g := make([][]int, n)
for i := range g {
g[i] = make([]int, n)
for j := range g[i] {
g[i][j] = inf
}
}
for _, e := range times {
g[e[0]-1][e[1]-1] = e[2]
}
dist := make([]int, n)
for i := range dist {
dist[i] = inf
}
dist[k-1] = 0
vis := make([]bool, n)
for i := 0; i < n; i++ {
t := -1
for j := 0; j < n; j++ {
if !vis[j] && (t == -1 || dist[t] > dist[j]) {
t = j
}
}
vis[t] = true
for j := 0; j < n; j++ {
dist[j] = min(dist[j], dist[t]+g[t][j])
}
}
if ans := slices.Max(dist); ans != inf {
return ans
}
return -1
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | function networkDelayTime(times: number[][], n: number, k: number): number {
const g: number[][] = Array.from({ length: n }, () => Array(n).fill(Infinity));
for (const [u, v, w] of times) {
g[u - 1][v - 1] = w;
}
const dist: number[] = Array(n).fill(Infinity);
dist[k - 1] = 0;
const vis: boolean[] = Array(n).fill(false);
for (let i = 0; i < n; ++i) {
let t = -1;
for (let j = 0; j < n; ++j) {
if (!vis[j] && (t === -1 || dist[j] < dist[t])) {
t = j;
}
}
vis[t] = true;
for (let j = 0; j < n; ++j) {
dist[j] = Math.min(dist[j], dist[t] + g[t][j]);
}
}
const ans = Math.max(...dist);
return ans === Infinity ? -1 : ans;
}
|
方法二:堆优化 Dijkstra 算法
我们可以使用优先队列(堆)来优化朴素 Dijkstra 算法。
我们定义 $\textit{g}[u]$ 表示节点 $u$ 的所有邻接边,而 $\textit{dist}[u]$ 表示节点 $k$ 到节点 $u$ 的最短路径长度。初始时,我们将 $\textit{dist}[u]$ 全部初始化为 $+\infty$,但 $\textit{dist}[k - 1] = 0$。
定义一个优先队列 $\textit{pq}$,其中每个元素为 $(\textit{d}, u)$,表示节点 $u$ 到节点 $k$ 的距离为 $\textit{d}$。我们每次从 $\textit{pq}$ 中取出距离最小的节点 $(\textit{d}, u)$。如果 $\textit{d} > \textit{dist}[u]$,则跳过该节点。否则,我们遍历节点 $u$ 的所有邻接边,对于每个邻接边 $(v, w)$,如果 $\textit{dist}[v] > \textit{dist}[u] + w$,则更新 $\textit{dist}[v] = \textit{dist}[u] + w$,并将 $(\textit{dist}[v], v)$ 加入 $\textit{pq}$。
最后,我们返回 $\textit{dist}$ 中的最大值,即为答案。如果答案为 $+\infty$,则说明存在无法到达的节点,返回 $-1$。
时间复杂度 $O(m \times \log m + n)$,空间复杂度 $O(n + m)$。其中 $n$ 和 $m$ 分别为节点数和边数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution:
def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int:
g = [[] for _ in range(n)]
for u, v, w in times:
g[u - 1].append((v - 1, w))
dist = [inf] * n
dist[k - 1] = 0
pq = [(0, k - 1)]
while pq:
d, u = heappop(pq)
if d > dist[u]:
continue
for v, w in g[u]:
if (nd := d + w) < dist[v]:
dist[v] = nd
heappush(pq, (nd, v))
ans = max(dist)
return -1 if ans == inf else ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | class Solution {
public int networkDelayTime(int[][] times, int n, int k) {
final int inf = 1 << 29;
List<int[]>[] g = new List[n];
Arrays.setAll(g, i -> new ArrayList<>());
for (var e : times) {
g[e[0] - 1].add(new int[] {e[1] - 1, e[2]});
}
int[] dist = new int[n];
Arrays.fill(dist, inf);
dist[k - 1] = 0;
PriorityQueue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
pq.offer(new int[] {0, k - 1});
while (!pq.isEmpty()) {
var p = pq.poll();
int d = p[0], u = p[1];
if (d > dist[u]) {
continue;
}
for (var e : g[u]) {
int v = e[0], w = e[1];
if (dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
pq.offer(new int[] {dist[v], v});
}
}
}
int ans = Arrays.stream(dist).max().getAsInt();
return ans == inf ? -1 : ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | class Solution {
public:
int networkDelayTime(vector<vector<int>>& times, int n, int k) {
const int inf = 1 << 29;
using pii = pair<int, int>;
vector<vector<pii>> g(n);
for (auto& edge : times) {
g[edge[0] - 1].emplace_back(edge[1] - 1, edge[2]);
}
vector<int> dist(n, inf);
dist[k - 1] = 0;
priority_queue<pii, vector<pii>, greater<>> pq;
pq.emplace(0, k - 1);
while (!pq.empty()) {
auto [d, u] = pq.top();
pq.pop();
if (d > dist[u]) {
continue;
}
for (auto& [v, w] : g[u]) {
if (dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
pq.emplace(dist[v], v);
}
}
}
int ans = ranges::max(dist);
return ans == inf ? -1 : ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 | func networkDelayTime(times [][]int, n int, k int) int {
g := make([][][2]int, n)
for _, e := range times {
u, v, w := e[0]-1, e[1]-1, e[2]
g[u] = append(g[u], [2]int{v, w})
}
dist := make([]int, n)
const inf int = 1 << 29
for i := range dist {
dist[i] = inf
}
dist[k-1] = 0
pq := hp{{0, k - 1}}
for len(pq) > 0 {
p := heap.Pop(&pq).(pair)
d, u := p.x, p.i
if d > dist[u] {
continue
}
for _, e := range g[u] {
v, w := e[0], e[1]
if nd := d + w; nd < dist[v] {
dist[v] = nd
heap.Push(&pq, pair{nd, v})
}
}
}
if ans := slices.Max(dist); ans < inf {
return ans
}
return -1
}
type pair struct{ x, i int }
type hp []pair
func (h hp) Len() int { return len(h) }
func (h hp) Less(i, j int) bool { return h[i].x < h[j].x }
func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(x any) { *h = append(*h, x.(pair)) }
func (h *hp) Pop() (x any) { a := *h; x = a[len(a)-1]; *h = a[:len(a)-1]; return }
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | function networkDelayTime(times: number[][], n: number, k: number): number {
const g: [number, number][][] = Array.from({ length: n }, () => []);
for (const [u, v, w] of times) {
g[u - 1].push([v - 1, w]);
}
const dist: number[] = Array(n).fill(Infinity);
dist[k - 1] = 0;
const pq = new MinPriorityQueue({ priority: v => v[0] });
pq.enqueue([0, k - 1]);
while (!pq.isEmpty()) {
const [d, u] = pq.dequeue().element;
if (d > dist[u]) {
continue;
}
for (const [v, w] of g[u]) {
if (dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
pq.enqueue([dist[v], v]);
}
}
}
const ans = Math.max(...dist);
return ans === Infinity ? -1 : ans;
}
|