题目描述
给你一个 n x n
的网格 grid
,代表一块樱桃地,每个格子由以下三种数字的一种来表示:
0
表示这个格子是空的,所以你可以穿过它。
1
表示这个格子里装着一个樱桃,你可以摘到樱桃然后穿过它。
-1
表示这个格子里有荆棘,挡着你的路。
请你统计并返回:在遵守下列规则的情况下,能摘到的最多樱桃数:
- 从位置
(0, 0)
出发,最后到达 (n - 1, n - 1)
,只能向下或向右走,并且只能穿越有效的格子(即只可以穿过值为 0
或者 1
的格子);
- 当到达
(n - 1, n - 1)
后,你要继续走,直到返回到 (0, 0)
,只能向上或向左走,并且只能穿越有效的格子;
- 当你经过一个格子且这个格子包含一个樱桃时,你将摘到樱桃并且这个格子会变成空的(值变为
0
);
- 如果在
(0, 0)
和 (n - 1, n - 1)
之间不存在一条可经过的路径,则无法摘到任何一个樱桃。
示例 1:
输入:grid = [[0,1,-1],[1,0,-1],[1,1,1]]
输出:5
解释:玩家从 (0, 0) 出发:向下、向下、向右、向右移动至 (2, 2) 。
在这一次行程中捡到 4 个樱桃,矩阵变成 [[0,1,-1],[0,0,-1],[0,0,0]] 。
然后,玩家向左、向上、向上、向左返回起点,再捡到 1 个樱桃。
总共捡到 5 个樱桃,这是最大可能值。
示例 2:
输入:grid = [[1,1,-1],[1,-1,1],[-1,1,1]]
输出:0
提示:
n == grid.length
n == grid[i].length
1 <= n <= 50
grid[i][j]
为 -1
、0
或 1
grid[0][0] != -1
grid[n - 1][n - 1] != -1
解法
方法一:动态规划
根据题目描述,玩家从 $(0, 0)$ 出发,到达 $(n-1, n-1)$ 后,又重新返回到起始点 $(0, 0)$,我们可以视为玩家两次从 $(0, 0)$ 出发,到达 $(n-1, n-1)$。
因此,我们定义 $f[k][i_1][i_2]$ 表示两次都走了 $k$ 步,分别到达 $(i_1, k-i_1)$ 和 $(i_2, k-i_2)$ 时,能够摘到的最多樱桃数。初始时 $f[0][0][0] = grid[0][0]$。其余 $f[k][i_1][i_2]$ 的初始值为负无穷。答案为 $\max(0, f[2n-2][n-1][n-1])$。
我们可以根据题目描述,得到状态转移方程:
$$
f[k][i_1][i_2] = \max(f[k-1][x_1][x_2] + t, f[k][i_1][i_2])
$$
其中 $t$ 表示 $(i_1, k-i_1)$ 和 $(i_2, k-i_2)$ 位置上的樱桃数,而 $x_1, x_2$ 分别表示 $(i_1, k-i_1)$ 和 $(i_2, k-i_2)$ 的前一步位置。
时间复杂度 $O(n^3)$,空间复杂度 $O(n^3)$。其中 $n$ 表示网格的边长。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | class Solution:
def cherryPickup(self, grid: List[List[int]]) -> int:
n = len(grid)
f = [[[-inf] * n for _ in range(n)] for _ in range((n << 1) - 1)]
f[0][0][0] = grid[0][0]
for k in range(1, (n << 1) - 1):
for i1 in range(n):
for i2 in range(n):
j1, j2 = k - i1, k - i2
if (
not 0 <= j1 < n
or not 0 <= j2 < n
or grid[i1][j1] == -1
or grid[i2][j2] == -1
):
continue
t = grid[i1][j1]
if i1 != i2:
t += grid[i2][j2]
for x1 in range(i1 - 1, i1 + 1):
for x2 in range(i2 - 1, i2 + 1):
if x1 >= 0 and x2 >= 0:
f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][x1][x2] + t)
return max(0, f[-1][-1][-1])
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | class Solution {
public int cherryPickup(int[][] grid) {
int n = grid.length;
int[][][] f = new int[n * 2][n][n];
f[0][0][0] = grid[0][0];
for (int k = 1; k < n * 2 - 1; ++k) {
for (int i1 = 0; i1 < n; ++i1) {
for (int i2 = 0; i2 < n; ++i2) {
int j1 = k - i1, j2 = k - i2;
f[k][i1][i2] = Integer.MIN_VALUE;
if (j1 < 0 || j1 >= n || j2 < 0 || j2 >= n || grid[i1][j1] == -1
|| grid[i2][j2] == -1) {
continue;
}
int t = grid[i1][j1];
if (i1 != i2) {
t += grid[i2][j2];
}
for (int x1 = i1 - 1; x1 <= i1; ++x1) {
for (int x2 = i2 - 1; x2 <= i2; ++x2) {
if (x1 >= 0 && x2 >= 0) {
f[k][i1][i2] = Math.max(f[k][i1][i2], f[k - 1][x1][x2] + t);
}
}
}
}
}
}
return Math.max(0, f[n * 2 - 2][n - 1][n - 1]);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public:
int cherryPickup(vector<vector<int>>& grid) {
int n = grid.size();
vector<vector<vector<int>>> f(n << 1, vector<vector<int>>(n, vector<int>(n, -1e9)));
f[0][0][0] = grid[0][0];
for (int k = 1; k < n * 2 - 1; ++k) {
for (int i1 = 0; i1 < n; ++i1) {
for (int i2 = 0; i2 < n; ++i2) {
int j1 = k - i1, j2 = k - i2;
if (j1 < 0 || j1 >= n || j2 < 0 || j2 >= n || grid[i1][j1] == -1 || grid[i2][j2] == -1) {
continue;
}
int t = grid[i1][j1];
if (i1 != i2) {
t += grid[i2][j2];
}
for (int x1 = i1 - 1; x1 <= i1; ++x1) {
for (int x2 = i2 - 1; x2 <= i2; ++x2) {
if (x1 >= 0 && x2 >= 0) {
f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][x1][x2] + t);
}
}
}
}
}
}
return max(0, f[n * 2 - 2][n - 1][n - 1]);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | func cherryPickup(grid [][]int) int {
n := len(grid)
f := make([][][]int, (n<<1)-1)
for i := range f {
f[i] = make([][]int, n)
for j := range f[i] {
f[i][j] = make([]int, n)
}
}
f[0][0][0] = grid[0][0]
for k := 1; k < (n<<1)-1; k++ {
for i1 := 0; i1 < n; i1++ {
for i2 := 0; i2 < n; i2++ {
f[k][i1][i2] = int(-1e9)
j1, j2 := k-i1, k-i2
if j1 < 0 || j1 >= n || j2 < 0 || j2 >= n || grid[i1][j1] == -1 || grid[i2][j2] == -1 {
continue
}
t := grid[i1][j1]
if i1 != i2 {
t += grid[i2][j2]
}
for x1 := i1 - 1; x1 <= i1; x1++ {
for x2 := i2 - 1; x2 <= i2; x2++ {
if x1 >= 0 && x2 >= 0 {
f[k][i1][i2] = max(f[k][i1][i2], f[k-1][x1][x2]+t)
}
}
}
}
}
}
return max(0, f[n*2-2][n-1][n-1])
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | function cherryPickup(grid: number[][]): number {
const n: number = grid.length;
const f: number[][][] = Array.from({ length: n * 2 - 1 }, () =>
Array.from({ length: n }, () => Array.from({ length: n }, () => -Infinity)),
);
f[0][0][0] = grid[0][0];
for (let k = 1; k < n * 2 - 1; ++k) {
for (let i1 = 0; i1 < n; ++i1) {
for (let i2 = 0; i2 < n; ++i2) {
const [j1, j2]: [number, number] = [k - i1, k - i2];
if (
j1 < 0 ||
j1 >= n ||
j2 < 0 ||
j2 >= n ||
grid[i1][j1] == -1 ||
grid[i2][j2] == -1
) {
continue;
}
const t: number = grid[i1][j1] + (i1 != i2 ? grid[i2][j2] : 0);
for (let x1 = i1 - 1; x1 <= i1; ++x1) {
for (let x2 = i2 - 1; x2 <= i2; ++x2) {
if (x1 >= 0 && x2 >= 0) {
f[k][i1][i2] = Math.max(f[k][i1][i2], f[k - 1][x1][x2] + t);
}
}
}
}
}
}
return Math.max(0, f[n * 2 - 2][n - 1][n - 1]);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 | /**
* @param {number[][]} grid
* @return {number}
*/
var cherryPickup = function (grid) {
const n = grid.length;
const f = Array.from({ length: n * 2 - 1 }, () =>
Array.from({ length: n }, () => Array.from({ length: n }, () => -Infinity)),
);
f[0][0][0] = grid[0][0];
for (let k = 1; k < n * 2 - 1; ++k) {
for (let i1 = 0; i1 < n; ++i1) {
for (let i2 = 0; i2 < n; ++i2) {
const [j1, j2] = [k - i1, k - i2];
if (
j1 < 0 ||
j1 >= n ||
j2 < 0 ||
j2 >= n ||
grid[i1][j1] == -1 ||
grid[i2][j2] == -1
) {
continue;
}
const t = grid[i1][j1] + (i1 != i2 ? grid[i2][j2] : 0);
for (let x1 = i1 - 1; x1 <= i1; ++x1) {
for (let x2 = i2 - 1; x2 <= i2; ++x2) {
if (x1 >= 0 && x2 >= 0) {
f[k][i1][i2] = Math.max(f[k][i1][i2], f[k - 1][x1][x2] + t);
}
}
}
}
}
}
return Math.max(0, f[n * 2 - 2][n - 1][n - 1]);
};
|