数组
哈希表
矩阵
题目描述
给定一个 m x n
的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。
示例 1:
输入: matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出: [[1,0,1],[0,0,0],[1,0,1]]
示例 2:
输入: matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出: [[0,0,0,0],[0,4,5,0],[0,3,1,0]]
提示:
m == matrix.length
n == matrix[0].length
1 <= m, n <= 200
-231 <= matrix[i][j] <= 231 - 1
进阶:
一个直观的解决方案是使用 O(m n )
的额外空间,但这并不是一个好的解决方案。
一个简单的改进方案是使用 O(m + n )
的额外空间,但这仍然不是最好的解决方案。
你能想出一个仅使用常量空间的解决方案吗?
解法
Solution 1: Array Marking
Let the number of rows and columns of the matrix be $m$ and $n$, respectively. We use an array $\textit{rows}$ of length $m$ and an array $\textit{cols}$ of length $n$ to record which rows and columns need to be set to zero.
First, we traverse the matrix. When we find a zero element in the matrix, we set the corresponding row and column markers to $\text{true}$. That is, if $\textit{matrix}[i][j] = 0$, then $\textit{rows}[i] = \textit{cols}[j] = \text{true}$.
Finally, we traverse the matrix again and use the markers in $\textit{rows}$ and $\textit{cols}$ to update the elements in the matrix. When we find that $\textit{rows}[i]$ or $\textit{cols}[j]$ is $\text{true}$, we set $\textit{matrix}[i][j]$ to zero.
The time complexity is $O(m \times n)$, and the space complexity is $O(m + n)$. Here, $m$ and $n$ are the number of rows and columns of the matrix, respectively.
Python3 Java C++ Go TypeScript JavaScript C#
1
2
3
4
5
6
7
8
9
10
11
12
13 class Solution :
def setZeroes ( self , matrix : List [ List [ int ]]) -> None :
m , n = len ( matrix ), len ( matrix [ 0 ])
row = [ False ] * m
col = [ False ] * n
for i in range ( m ):
for j in range ( n ):
if matrix [ i ][ j ] == 0 :
row [ i ] = col [ j ] = True
for i in range ( m ):
for j in range ( n ):
if row [ i ] or col [ j ]:
matrix [ i ][ j ] = 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 class Solution {
public void setZeroes ( int [][] matrix ) {
int m = matrix . length , n = matrix [ 0 ] . length ;
boolean [] row = new boolean [ m ] ;
boolean [] col = new boolean [ n ] ;
for ( int i = 0 ; i < m ; ++ i ) {
for ( int j = 0 ; j < n ; ++ j ) {
if ( matrix [ i ][ j ] == 0 ) {
row [ i ] = col [ j ] = true ;
}
}
}
for ( int i = 0 ; i < m ; ++ i ) {
for ( int j = 0 ; j < n ; ++ j ) {
if ( row [ i ] || col [ j ] ) {
matrix [ i ][ j ] = 0 ;
}
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 class Solution {
public :
void setZeroes ( vector < vector < int >>& matrix ) {
int m = matrix . size (), n = matrix [ 0 ]. size ();
vector < bool > row ( m );
vector < bool > col ( n );
for ( int i = 0 ; i < m ; ++ i ) {
for ( int j = 0 ; j < n ; ++ j ) {
if ( matrix [ i ][ j ] == 0 ) {
row [ i ] = col [ j ] = true ;
}
}
}
for ( int i = 0 ; i < m ; ++ i ) {
for ( int j = 0 ; j < n ; ++ j ) {
if ( row [ i ] || col [ j ]) {
matrix [ i ][ j ] = 0 ;
}
}
}
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 func setZeroes ( matrix [][] int ) {
row := make ([] bool , len ( matrix ))
col := make ([] bool , len ( matrix [ 0 ]))
for i := range matrix {
for j , x := range matrix [ i ] {
if x == 0 {
row [ i ] = true
col [ j ] = true
}
}
}
for i := range matrix {
for j := range matrix [ i ] {
if row [ i ] || col [ j ] {
matrix [ i ][ j ] = 0
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 /**
Do not return anything, modify matrix in-place instead.
*/
function setZeroes ( matrix : number [][]) : void {
const m = matrix . length ;
const n = matrix [ 0 ]. length ;
const row : boolean [] = Array ( m ). fill ( false );
const col : boolean [] = Array ( n ). fill ( false );
for ( let i = 0 ; i < m ; ++ i ) {
for ( let j = 0 ; j < n ; ++ j ) {
if ( matrix [ i ][ j ] === 0 ) {
row [ i ] = col [ j ] = true ;
}
}
}
for ( let i = 0 ; i < m ; ++ i ) {
for ( let j = 0 ; j < n ; ++ j ) {
if ( row [ i ] || col [ j ]) {
matrix [ i ][ j ] = 0 ;
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 /**
* @param {number[][]} matrix
* @return {void} Do not return anything, modify matrix in-place instead.
*/
var setZeroes = function ( matrix ) {
const m = matrix . length ;
const n = matrix [ 0 ]. length ;
const row = Array ( m ). fill ( false );
const col = Array ( n ). fill ( false );
for ( let i = 0 ; i < m ; ++ i ) {
for ( let j = 0 ; j < n ; ++ j ) {
if ( matrix [ i ][ j ] === 0 ) {
row [ i ] = col [ j ] = true ;
}
}
}
for ( let i = 0 ; i < m ; ++ i ) {
for ( let j = 0 ; j < n ; ++ j ) {
if ( row [ i ] || col [ j ]) {
matrix [ i ][ j ] = 0 ;
}
}
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 public class Solution {
public void SetZeroes ( int [][] matrix ) {
int m = matrix . Length , n = matrix [ 0 ]. Length ;
bool [] row = new bool [ m ], col = new bool [ n ];
for ( int i = 0 ; i < m ; ++ i ) {
for ( int j = 0 ; j < n ; ++ j ) {
if ( matrix [ i ][ j ] == 0 ) {
row [ i ] = true ;
col [ j ] = true ;
}
}
}
for ( int i = 0 ; i < m ; ++ i ) {
for ( int j = 0 ; j < n ; ++ j ) {
if ( row [ i ] || col [ j ]) {
matrix [ i ][ j ] = 0 ;
}
}
}
}
}
方法二:原地标记
方法一中使用了额外的数组标记待清零的行和列,实际上我们也可以直接用矩阵的第一行和第一列来标记,不需要开辟额外的数组空间。
由于第一行、第一列用来做标记,它们的值可能会因为标记而发生改变,因此,我们需要额外的变量 $i0$, $j0$ 来标记第一行、第一列是否需要被清零。
时间复杂度 $O(m\times n)$,空间复杂度 $O(1)$。其中 $m$ 和 $n$ 分别为矩阵的行数和列数。
Python3 Java C++ Go TypeScript JavaScript C#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 class Solution :
def setZeroes ( self , matrix : List [ List [ int ]]) -> None :
m , n = len ( matrix ), len ( matrix [ 0 ])
i0 = any ( v == 0 for v in matrix [ 0 ])
j0 = any ( matrix [ i ][ 0 ] == 0 for i in range ( m ))
for i in range ( 1 , m ):
for j in range ( 1 , n ):
if matrix [ i ][ j ] == 0 :
matrix [ i ][ 0 ] = matrix [ 0 ][ j ] = 0
for i in range ( 1 , m ):
for j in range ( 1 , n ):
if matrix [ i ][ 0 ] == 0 or matrix [ 0 ][ j ] == 0 :
matrix [ i ][ j ] = 0
if i0 :
for j in range ( n ):
matrix [ 0 ][ j ] = 0
if j0 :
for i in range ( m ):
matrix [ i ][ 0 ] = 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 class Solution {
public void setZeroes ( int [][] matrix ) {
int m = matrix . length , n = matrix [ 0 ] . length ;
boolean i0 = false , j0 = false ;
for ( int j = 0 ; j < n ; ++ j ) {
if ( matrix [ 0 ][ j ] == 0 ) {
i0 = true ;
break ;
}
}
for ( int i = 0 ; i < m ; ++ i ) {
if ( matrix [ i ][ 0 ] == 0 ) {
j0 = true ;
break ;
}
}
for ( int i = 1 ; i < m ; ++ i ) {
for ( int j = 1 ; j < n ; ++ j ) {
if ( matrix [ i ][ j ] == 0 ) {
matrix [ i ][ 0 ] = 0 ;
matrix [ 0 ][ j ] = 0 ;
}
}
}
for ( int i = 1 ; i < m ; ++ i ) {
for ( int j = 1 ; j < n ; ++ j ) {
if ( matrix [ i ][ 0 ] == 0 || matrix [ 0 ][ j ] == 0 ) {
matrix [ i ][ j ] = 0 ;
}
}
}
if ( i0 ) {
for ( int j = 0 ; j < n ; ++ j ) {
matrix [ 0 ][ j ] = 0 ;
}
}
if ( j0 ) {
for ( int i = 0 ; i < m ; ++ i ) {
matrix [ i ][ 0 ] = 0 ;
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 class Solution {
public :
void setZeroes ( vector < vector < int >>& matrix ) {
int m = matrix . size (), n = matrix [ 0 ]. size ();
bool i0 = false , j0 = false ;
for ( int j = 0 ; j < n ; ++ j ) {
if ( matrix [ 0 ][ j ] == 0 ) {
i0 = true ;
break ;
}
}
for ( int i = 0 ; i < m ; ++ i ) {
if ( matrix [ i ][ 0 ] == 0 ) {
j0 = true ;
break ;
}
}
for ( int i = 1 ; i < m ; ++ i ) {
for ( int j = 1 ; j < n ; ++ j ) {
if ( matrix [ i ][ j ] == 0 ) {
matrix [ i ][ 0 ] = 0 ;
matrix [ 0 ][ j ] = 0 ;
}
}
}
for ( int i = 1 ; i < m ; ++ i ) {
for ( int j = 1 ; j < n ; ++ j ) {
if ( matrix [ i ][ 0 ] == 0 || matrix [ 0 ][ j ] == 0 ) {
matrix [ i ][ j ] = 0 ;
}
}
}
if ( i0 ) {
for ( int j = 0 ; j < n ; ++ j ) {
matrix [ 0 ][ j ] = 0 ;
}
}
if ( j0 ) {
for ( int i = 0 ; i < m ; ++ i ) {
matrix [ i ][ 0 ] = 0 ;
}
}
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 func setZeroes ( matrix [][] int ) {
m , n := len ( matrix ), len ( matrix [ 0 ])
i0 , j0 := false , false
for j := 0 ; j < n ; j ++ {
if matrix [ 0 ][ j ] == 0 {
i0 = true
break
}
}
for i := 0 ; i < m ; i ++ {
if matrix [ i ][ 0 ] == 0 {
j0 = true
break
}
}
for i := 1 ; i < m ; i ++ {
for j := 1 ; j < n ; j ++ {
if matrix [ i ][ j ] == 0 {
matrix [ i ][ 0 ], matrix [ 0 ][ j ] = 0 , 0
}
}
}
for i := 1 ; i < m ; i ++ {
for j := 1 ; j < n ; j ++ {
if matrix [ i ][ 0 ] == 0 || matrix [ 0 ][ j ] == 0 {
matrix [ i ][ j ] = 0
}
}
}
if i0 {
for j := 0 ; j < n ; j ++ {
matrix [ 0 ][ j ] = 0
}
}
if j0 {
for i := 0 ; i < m ; i ++ {
matrix [ i ][ 0 ] = 0
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
Do not return anything, modify matrix in-place instead.
*/
function setZeroes ( matrix : number [][]) : void {
const m = matrix . length ;
const n = matrix [ 0 ]. length ;
const i0 = matrix [ 0 ]. includes ( 0 );
const j0 = matrix . map ( row => row [ 0 ]). includes ( 0 );
for ( let i = 1 ; i < m ; ++ i ) {
for ( let j = 1 ; j < n ; ++ j ) {
if ( matrix [ i ][ j ] === 0 ) {
matrix [ i ][ 0 ] = 0 ;
matrix [ 0 ][ j ] = 0 ;
}
}
}
for ( let i = 1 ; i < m ; ++ i ) {
for ( let j = 1 ; j < n ; ++ j ) {
if ( matrix [ i ][ 0 ] === 0 || matrix [ 0 ][ j ] === 0 ) {
matrix [ i ][ j ] = 0 ;
}
}
}
if ( i0 ) {
matrix [ 0 ]. fill ( 0 );
}
if ( j0 ) {
for ( let i = 0 ; i < m ; ++ i ) {
matrix [ i ][ 0 ] = 0 ;
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 /**
* @param {number[][]} matrix
* @return {void} Do not return anything, modify matrix in-place instead.
*/
var setZeroes = function ( matrix ) {
const m = matrix . length ;
const n = matrix [ 0 ]. length ;
let i0 = matrix [ 0 ]. some ( v => v == 0 );
let j0 = false ;
for ( let i = 0 ; i < m ; ++ i ) {
if ( matrix [ i ][ 0 ] == 0 ) {
j0 = true ;
break ;
}
}
for ( let i = 1 ; i < m ; ++ i ) {
for ( let j = 1 ; j < n ; ++ j ) {
if ( matrix [ i ][ j ] == 0 ) {
matrix [ i ][ 0 ] = 0 ;
matrix [ 0 ][ j ] = 0 ;
}
}
}
for ( let i = 1 ; i < m ; ++ i ) {
for ( let j = 1 ; j < n ; ++ j ) {
if ( matrix [ i ][ 0 ] == 0 || matrix [ 0 ][ j ] == 0 ) {
matrix [ i ][ j ] = 0 ;
}
}
}
if ( i0 ) {
for ( let j = 0 ; j < n ; ++ j ) {
matrix [ 0 ][ j ] = 0 ;
}
}
if ( j0 ) {
for ( let i = 0 ; i < m ; ++ i ) {
matrix [ i ][ 0 ] = 0 ;
}
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 public class Solution {
public void SetZeroes ( int [][] matrix ) {
int m = matrix . Length , n = matrix [ 0 ]. Length ;
bool i0 = matrix [ 0 ]. Contains ( 0 ), j0 = false ;
for ( int i = 0 ; i < m ; ++ i ) {
if ( matrix [ i ][ 0 ] == 0 ) {
j0 = true ;
break ;
}
}
for ( int i = 1 ; i < m ; ++ i ) {
for ( int j = 1 ; j < n ; ++ j ) {
if ( matrix [ i ][ j ] == 0 ) {
matrix [ i ][ 0 ] = 0 ;
matrix [ 0 ][ j ] = 0 ;
}
}
}
for ( int i = 1 ; i < m ; ++ i ) {
for ( int j = 1 ; j < n ; ++ j ) {
if ( matrix [ i ][ 0 ] == 0 || matrix [ 0 ][ j ] == 0 ) {
matrix [ i ][ j ] = 0 ;
}
}
}
if ( i0 ) {
for ( int j = 0 ; j < n ; ++ j ) {
matrix [ 0 ][ j ] = 0 ;
}
}
if ( j0 ) {
for ( int i = 0 ; i < m ; ++ i ) {
matrix [ i ][ 0 ] = 0 ;
}
}
}
}
GitHub