题目描述
给定字符串 s1
和 s2
,找出 s1
中最短的连续 子串,使得 s2
是该子串的 子序列 。
如果 s1
中没有窗口可以包含 s2
中的所有字符,返回空字符串 ""
。如果有不止一个最短长度的窗口,返回 开始位置最靠左 的那个。
示例 1:
输入:
s1 = "abcdebdde", s2 = "bde"
输出:"bcde"
解释:
"bcde" 是答案,因为它在相同长度的字符串 "bdde" 出现之前。
"deb" 不是一个更短的答案,因为在窗口中必须按顺序出现 T 中的元素。
示例 2:
输入:s1 = "jmeqksfrsdcmsiwvaovztaqenprpvnbstl", s2 = "u"
输出:""
提示:
1 <= s1.length <= 2 * 104
1 <= s2.length <= 100
s1
和 s2
只包含小写英文字母。
解法
方法一:动态规划
我们定义 $f[i][j]$ 表示字符串 $s1$ 的前 $i$ 个字符包含字符串 $s2$ 的前 $j$ 个字符时的最短子串的起始位置,如果不存在则为 $0$。
我们可以得到状态转移方程:
$$
f[i][j] = \begin{cases}
i, & j = 1 \textit{ and } s1[i-1] = s2[j] \
f[i - 1][j - 1], & j > 1 \textit{ and } s1[i-1] = s2[j-1] \
f[i - 1][j], & s1[i-1] \ne s2[j-1]
\end{cases}
$$
接下来我们只需要遍历 $s1$,如果 $f[i][n] \gt 0$,则更新最短子串的起始位置和长度。最后返回最短子串即可。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别为字符串 $s1$ 和 $s2$ 的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution:
def minWindow(self, s1: str, s2: str) -> str:
m, n = len(s1), len(s2)
f = [[0] * (n + 1) for _ in range(m + 1)]
for i, a in enumerate(s1, 1):
for j, b in enumerate(s2, 1):
if a == b:
f[i][j] = i if j == 1 else f[i - 1][j - 1]
else:
f[i][j] = f[i - 1][j]
p, k = 0, m + 1
for i, a in enumerate(s1, 1):
if a == s2[n - 1] and f[i][n]:
j = f[i][n] - 1
if i - j < k:
k = i - j
p = j
return "" if k > m else s1[p : p + k]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | class Solution {
public String minWindow(String s1, String s2) {
int m = s1.length(), n = s2.length();
int[][] f = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
f[i][j] = j == 1 ? i : f[i - 1][j - 1];
} else {
f[i][j] = f[i - 1][j];
}
}
}
int p = 0, k = m + 1;
for (int i = 1; i <= m; ++i) {
if (s1.charAt(i - 1) == s2.charAt(n - 1) && f[i][n] > 0) {
int j = f[i][n] - 1;
if (i - j < k) {
k = i - j;
p = j;
}
}
}
return k > m ? "" : s1.substring(p, p + k);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | class Solution {
public:
string minWindow(string s1, string s2) {
int m = s1.size(), n = s2.size();
int f[m + 1][n + 1];
memset(f, 0, sizeof(f));
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (s1[i - 1] == s2[j - 1]) {
f[i][j] = j == 1 ? i : f[i - 1][j - 1];
} else {
f[i][j] = f[i - 1][j];
}
}
}
int p = 0, k = m + 1;
for (int i = 1; i <= m; ++i) {
if (s1[i - 1] == s2[n - 1] && f[i][n]) {
int j = f[i][n] - 1;
if (i - j < k) {
k = i - j;
p = j;
}
}
}
return k > m ? "" : s1.substr(p, k);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | func minWindow(s1 string, s2 string) string {
m, n := len(s1), len(s2)
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
if s1[i-1] == s2[j-1] {
if j == 1 {
f[i][j] = i
} else {
f[i][j] = f[i-1][j-1]
}
} else {
f[i][j] = f[i-1][j]
}
}
}
p, k := 0, m+1
for i := 1; i <= m; i++ {
if s1[i-1] == s2[n-1] && f[i][n] > 0 {
j := f[i][n] - 1
if i-j < k {
k = i - j
p = j
}
}
}
if k > m {
return ""
}
return s1[p : p+k]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | function minWindow(s1: string, s2: string): string {
const m = s1.length;
const n = s2.length;
const f: number[][] = Array(m + 1)
.fill(0)
.map(() => Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
if (s1[i - 1] === s2[j - 1]) {
f[i][j] = j === 1 ? i : f[i - 1][j - 1];
} else {
f[i][j] = f[i - 1][j];
}
}
}
let p = 0;
let k = m + 1;
for (let i = 1; i <= m; ++i) {
if (s1[i - 1] === s2[n - 1] && f[i][n]) {
const j = f[i][n] - 1;
if (i - j < k) {
k = i - j;
p = j;
}
}
}
return k > m ? '' : s1.slice(p, p + k);
}
|