题目描述
数对 (a,b)
由整数 a
和 b
组成,其数对距离定义为 a
和 b
的绝对差值。
给你一个整数数组 nums
和一个整数 k
,数对由 nums[i]
和 nums[j]
组成且满足 0 <= i < j < nums.length
。返回 所有数对距离中 第 k
小的数对距离。
示例 1:
输入:nums = [1,3,1], k = 1
输出:0
解释:数对和对应的距离如下:
(1,3) -> 2
(1,1) -> 0
(3,1) -> 2
距离第 1 小的数对是 (1,1) ,距离为 0 。
示例 2:
输入:nums = [1,1,1], k = 2
输出:0
示例 3:
输入:nums = [1,6,1], k = 3
输出:5
提示:
n == nums.length
2 <= n <= 104
0 <= nums[i] <= 106
1 <= k <= n * (n - 1) / 2
解法
方法一:排序 + 二分查找
先对 $nums$ 数组进行排序,然后在 $[0, nums[n-1]-nums[0]]$ 范围内二分枚举数对距离 $dist$,若 $nums$ 中数对距离小于等于 $dist$ 的数量 $cnt$ 大于等于 $k$,则尝试缩小 $dist$,否则尝试扩大 $dist$。
时间复杂度 $O(nlogn×logm)$,其中 $n$ 表示 $nums$ 的长度,$m$ 表示 $nums$ 中两个数的最大差值。
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution:
def smallestDistancePair(self, nums: List[int], k: int) -> int:
def count(dist):
cnt = 0
for i, b in enumerate(nums):
a = b - dist
j = bisect_left(nums, a, 0, i)
cnt += i - j
return cnt
nums.sort()
return bisect_left(range(nums[-1] - nums[0]), k, key=count)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | class Solution {
public int smallestDistancePair(int[] nums, int k) {
Arrays.sort(nums);
int left = 0, right = nums[nums.length - 1] - nums[0];
while (left < right) {
int mid = (left + right) >> 1;
if (count(mid, nums) >= k) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
private int count(int dist, int[] nums) {
int cnt = 0;
for (int i = 0; i < nums.length; ++i) {
int left = 0, right = i;
while (left < right) {
int mid = (left + right) >> 1;
int target = nums[i] - dist;
if (nums[mid] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
cnt += i - left;
}
return cnt;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | class Solution {
public:
int smallestDistancePair(vector<int>& nums, int k) {
sort(nums.begin(), nums.end());
int left = 0, right = nums.back() - nums.front();
while (left < right) {
int mid = (left + right) >> 1;
if (count(mid, k, nums) >= k)
right = mid;
else
left = mid + 1;
}
return left;
}
int count(int dist, int k, vector<int>& nums) {
int cnt = 0;
for (int i = 0; i < nums.size(); ++i) {
int target = nums[i] - dist;
int j = lower_bound(nums.begin(), nums.end(), target) - nums.begin();
cnt += i - j;
}
return cnt;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | func smallestDistancePair(nums []int, k int) int {
sort.Ints(nums)
n := len(nums)
left, right := 0, nums[n-1]-nums[0]
count := func(dist int) int {
cnt := 0
for i, v := range nums {
target := v - dist
left, right := 0, i
for left < right {
mid := (left + right) >> 1
if nums[mid] >= target {
right = mid
} else {
left = mid + 1
}
}
cnt += i - left
}
return cnt
}
for left < right {
mid := (left + right) >> 1
if count(mid) >= k {
right = mid
} else {
left = mid + 1
}
}
return left
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | function smallestDistancePair(nums: number[], k: number): number {
nums.sort((a, b) => a - b);
const n = nums.length;
let left = 0,
right = nums[n - 1] - nums[0];
while (left < right) {
let mid = (left + right) >> 1;
let count = 0,
i = 0;
for (let j = 0; j < n; j++) {
// 索引[i, j]距离nums[j]的距离<=mid
while (nums[j] - nums[i] > mid) {
i++;
}
count += j - i;
}
if (count >= k) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | /**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
function smallestDistancePair(nums, k) {
nums.sort((a, b) => a - b);
const n = nums.length;
let left = 0,
right = nums[n - 1] - nums[0];
while (left < right) {
const mid = (left + right) >> 1;
let count = 0,
i = 0;
for (let j = 0; j < n; j++) {
while (nums[j] - nums[i] > mid) {
i++;
}
count += j - i;
}
if (count >= k) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
|