题目描述
给定一个整数数组 nums
和一个正整数 k
,找出是否有可能把这个数组分成 k
个非空子集,其总和都相等。
示例 1:
输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
输出: True
说明: 有可能将其分成 4 个子集(5),(1,4),(2,3),(2,3)等于总和。
示例 2:
输入: nums = [1,2,3,4], k = 3
输出: false
提示:
1 <= k <= len(nums) <= 16
0 < nums[i] < 10000
- 每个元素的频率在
[1,4]
范围内
解法
方法一:DFS + 剪枝
根据题意,我们需要将数组 $\textit{nums}$ 划分为 $k$ 个子集,且每个子集的和相等。因此,先累加 $\textit{nums}$ 中所有元素的和,如果不能被 $k$ 整除,说明无法划分为 $k$ 个子集,提前返回 $\textit{false}$。
如果能被 $k$ 整除,不妨将每个子集期望的和记为 $s$,然后创建一个长度为 $k$ 的数组 $\textit{cur}$,表示当前每个子集的和。
对数组 $\textit{nums}$ 进行降序排序(减少搜索次数),然后从第一个元素开始,依次尝试将其加入到 $\textit{cur}$ 的每个子集中。这里如果将 $\textit{nums}[i]$ 加入某个子集 $\textit{cur}[j]$ 后,子集的和超过 $s$,说明无法放入,可以直接跳过;另外,如果 $\textit{cur}[j]$ 与 $\textit{cur}[j - 1]$ 相等,意味着我们在 $\textit{cur}[j - 1]$ 的时候已经完成了搜索,也可以跳过当前的搜索。
如果能将所有元素都加入到 $\textit{cur}$ 中,说明可以划分为 $k$ 个子集,返回 $\textit{true}$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution:
def canPartitionKSubsets(self, nums: List[int], k: int) -> bool:
def dfs(i):
if i == len(nums):
return True
for j in range(k):
if j and cur[j] == cur[j - 1]:
continue
cur[j] += nums[i]
if cur[j] <= s and dfs(i + 1):
return True
cur[j] -= nums[i]
return False
s, mod = divmod(sum(nums), k)
if mod:
return False
cur = [0] * k
nums.sort(reverse=True)
return dfs(0)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | class Solution {
private int[] nums;
private int[] cur;
private int s;
public boolean canPartitionKSubsets(int[] nums, int k) {
for (int v : nums) {
s += v;
}
if (s % k != 0) {
return false;
}
s /= k;
cur = new int[k];
Arrays.sort(nums);
this.nums = nums;
return dfs(nums.length - 1);
}
private boolean dfs(int i) {
if (i < 0) {
return true;
}
for (int j = 0; j < cur.length; ++j) {
if (j > 0 && cur[j] == cur[j - 1]) {
continue;
}
cur[j] += nums[i];
if (cur[j] <= s && dfs(i - 1)) {
return true;
}
cur[j] -= nums[i];
}
return false;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s % k) {
return false;
}
s /= k;
int n = nums.size();
vector<int> cur(k);
function<bool(int)> dfs = [&](int i) {
if (i == n) {
return true;
}
for (int j = 0; j < k; ++j) {
if (j && cur[j] == cur[j - 1]) {
continue;
}
cur[j] += nums[i];
if (cur[j] <= s && dfs(i + 1)) {
return true;
}
cur[j] -= nums[i];
}
return false;
};
sort(nums.begin(), nums.end(), greater<int>());
return dfs(0);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | func canPartitionKSubsets(nums []int, k int) bool {
s := 0
for _, v := range nums {
s += v
}
if s%k != 0 {
return false
}
s /= k
cur := make([]int, k)
n := len(nums)
var dfs func(int) bool
dfs = func(i int) bool {
if i == n {
return true
}
for j := 0; j < k; j++ {
if j > 0 && cur[j] == cur[j-1] {
continue
}
cur[j] += nums[i]
if cur[j] <= s && dfs(i+1) {
return true
}
cur[j] -= nums[i]
}
return false
}
sort.Sort(sort.Reverse(sort.IntSlice(nums)))
return dfs(0)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | function canPartitionKSubsets(nums: number[], k: number): boolean {
const dfs = (i: number): boolean => {
if (i === nums.length) {
return true;
}
for (let j = 0; j < k; j++) {
if (j > 0 && cur[j] === cur[j - 1]) {
continue;
}
cur[j] += nums[i];
if (cur[j] <= s && dfs(i + 1)) {
return true;
}
cur[j] -= nums[i];
}
return false;
};
let s = nums.reduce((a, b) => a + b, 0);
const mod = s % k;
if (mod !== 0) {
return false;
}
s = Math.floor(s / k);
const cur = Array(k).fill(0);
nums.sort((a, b) => b - a);
return dfs(0);
}
|
方法二:状态压缩 + 记忆化搜索
与方法一相同,我们依然先判断数组 $\textit{nums}$ 是否有可能被划分为 $k$ 个子集。如果不能被 $k$ 整除,直接返回 $\textit{false}$。
我们记 $s$ 为每个子集期望的和,当前元素被划分的情况为 $\textit{state}$。对于第 $i$ 个数,若 $\textit{state}$ 的第 $i$ 位为 $0$,说明第 $i$ 个元素未被划分。
我们的目标是从全部元素中凑出 $k$ 个和为 $s$ 的子集。记当前子集的和为 $t$。在未划分第 $i$ 个元素时:
- 若 $t + \textit{nums}[i] \gt s$,说明第 $i$ 个元素不能被添加到当前子集中,由于我们对 $\textit{nums}$ 数组进行升序排列,因此数组 $\textit{nums}$ 从位置 $i$ 开始的所有元素都不能被添加到当前子集,直接返回 $\textit{false}$。
- 否则,将第 $i$ 个元素添加到当前子集中,状态变为 $\textit{state} | 2^i$,然后继续对未划分的元素进行搜索。需要注意的是,若 $t + \textit{nums}[i] = s$,说明恰好可以得到一个和为 $s$ 的子集,下一步将 $t$ 归零(可以通过 $(t + \textit{nums}[i]) \bmod s$ 实现),并继续划分下一个子集。
为了避免重复搜索,我们使用一个长度为 $2^n$ 的数组 $\textit{f}$ 记录每个状态下的搜索结果。数组 $\textit{f}$ 有三个可能的值:
0
:表示当前状态还未搜索过;
-1
:表示当前状态下无法划分为 $k$ 个子集;
1
:表示当前状态下可以划分为 $k$ 个子集。
时间复杂度 $O(n \times 2^n)$,空间复杂度 $O(2^n)$。其中 $n$ 表示数组 $\textit{nums}$ 的长度。对于每个状态,我们需要遍历数组 $\textit{nums}$,时间复杂度为 $O(n)$;状态总数为 $2^n$,因此总的时间复杂度为 $O(n\times 2^n)$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution:
def canPartitionKSubsets(self, nums: List[int], k: int) -> bool:
@cache
def dfs(state, t):
if state == mask:
return True
for i, v in enumerate(nums):
if (state >> i) & 1:
continue
if t + v > s:
break
if dfs(state | 1 << i, (t + v) % s):
return True
return False
s, mod = divmod(sum(nums), k)
if mod:
return False
nums.sort()
mask = (1 << len(nums)) - 1
return dfs(0, 0)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 | class Solution {
private int[] f;
private int[] nums;
private int n;
private int s;
public boolean canPartitionKSubsets(int[] nums, int k) {
for (int v : nums) {
s += v;
}
if (s % k != 0) {
return false;
}
s /= k;
Arrays.sort(nums);
this.nums = nums;
n = nums.length;
f = new int[1 << n];
return dfs(0, 0);
}
private boolean dfs(int state, int t) {
if (state == (1 << n) - 1) {
return true;
}
if (f[state] != 0) {
return f[state] == 1;
}
for (int i = 0; i < n; ++i) {
if (((state >> i) & 1) == 1) {
continue;
}
if (t + nums[i] > s) {
break;
}
if (dfs(state | 1 << i, (t + nums[i]) % s)) {
f[state] = 1;
return true;
}
}
f[state] = -1;
return false;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 | class Solution {
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s % k) {
return false;
}
s /= k;
sort(nums.begin(), nums.end());
int n = nums.size();
int mask = (1 << n) - 1;
vector<int> f(1 << n);
function<bool(int, int)> dfs = [&](int state, int t) {
if (state == mask) {
return true;
}
if (f[state]) {
return f[state] == 1;
}
for (int i = 0; i < n; ++i) {
if (state >> i & 1) {
continue;
}
if (t + nums[i] > s) {
break;
}
if (dfs(state | 1 << i, (t + nums[i]) % s)) {
f[state] = 1;
return true;
}
}
f[state] = -1;
return false;
};
return dfs(0, 0);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | func canPartitionKSubsets(nums []int, k int) bool {
s := 0
for _, v := range nums {
s += v
}
if s%k != 0 {
return false
}
s /= k
n := len(nums)
f := make([]int, 1<<n)
mask := (1 << n) - 1
var dfs func(int, int) bool
dfs = func(state, t int) bool {
if state == mask {
return true
}
if f[state] != 0 {
return f[state] == 1
}
for i, v := range nums {
if (state >> i & 1) == 1 {
continue
}
if t+v > s {
break
}
if dfs(state|1<<i, (t+v)%s) {
f[state] = 1
return true
}
}
f[state] = -1
return false
}
sort.Ints(nums)
return dfs(0, 0)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | function canPartitionKSubsets(nums: number[], k: number): boolean {
let s = nums.reduce((a, b) => a + b, 0);
if (s % k !== 0) {
return false;
}
s = Math.floor(s / k);
nums.sort((a, b) => a - b);
const n = nums.length;
const mask = (1 << n) - 1;
const f = Array(1 << n).fill(0);
const dfs = (state: number, t: number): boolean => {
if (state === mask) {
return true;
}
if (f[state] !== 0) {
return f[state] === 1;
}
for (let i = 0; i < n; ++i) {
if ((state >> i) & 1) {
continue;
}
if (t + nums[i] > s) {
break;
}
if (dfs(state | (1 << i), (t + nums[i]) % s)) {
f[state] = 1;
return true;
}
}
f[state] = -1;
return false;
};
return dfs(0, 0);
}
|
方法三:动态规划
我们可以使用动态规划的方法求解本题。
我们定义 $f[i]$ 表示当前选取的数字的状态为 $i$ 时,是否存在 $k$ 个子集满足题目要求。初始时 $f[0]= true$,答案为 $f[2^n-1]$。其中 $n$ 表示数组 $nums$ 的长度。另外,我们定义 $cur[i]$ 表示当前选取的数字的状态为 $i$ 时,最后一个子集的和。
我们在 $[0, 2^n]$ 的范围内枚举状态 $i$,对于每个状态 $i$,如果 $f[i]$ 为 $\textit{false}$,我们直接跳过即可。否则,我们枚举 $\textit{nums}$ 数组中的任意一个数 $\textit{nums}[j]$,如果 $\textit{cur}[i] + \textit{nums}[j] > s$,我们直接跳出枚举循环,因为后面的数更大,无法放入当前子集;否则,如果 $i$ 的二进制表示的第 $j$ 位为 $0$,说明当前 $\textit{nums}[j]$ 还没有被选取,我们可以将其放入当前子集中,此时状态变为 $i | 2^j$,并更新 $\textit{cur}[i | 2^j] = (\textit{cur}[i] + \textit{nums}[j]) \bmod s$,并且 $f[i | 2^j] = \textit{true}$。
最后,我们返回 $f[2^n - 1]$ 即可。
时间复杂度 $O(n \times 2^n)$,空间复杂度 $O(2^n)$。其中 $n$ 表示数组 $\textit{nums}$ 的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution:
def canPartitionKSubsets(self, nums: List[int], k: int) -> bool:
s = sum(nums)
if s % k:
return False
s //= k
nums.sort()
n = len(nums)
f = [False] * (1 << n)
cur = [0] * (1 << n)
f[0] = True
for i in range(1 << n):
if not f[i]:
continue
for j in range(n):
if cur[i] + nums[j] > s:
break
if (i >> j & 1) == 0:
if not f[i | 1 << j]:
cur[i | 1 << j] = (cur[i] + nums[j]) % s
f[i | 1 << j] = True
return f[-1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | class Solution {
public boolean canPartitionKSubsets(int[] nums, int k) {
int s = 0;
for (int x : nums) {
s += x;
}
if (s % k != 0) {
return false;
}
s /= k;
Arrays.sort(nums);
int n = nums.length;
boolean[] f = new boolean[1 << n];
f[0] = true;
int[] cur = new int[1 << n];
for (int i = 0; i < 1 << n; ++i) {
if (!f[i]) {
continue;
}
for (int j = 0; j < n; ++j) {
if (cur[i] + nums[j] > s) {
break;
}
if ((i >> j & 1) == 0) {
cur[i | 1 << j] = (cur[i] + nums[j]) % s;
f[i | 1 << j] = true;
}
}
}
return f[(1 << n) - 1];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | class Solution {
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s % k) {
return false;
}
s /= k;
sort(nums.begin(), nums.end());
int n = nums.size();
bool f[1 << n];
int cur[1 << n];
memset(f, false, sizeof(f));
memset(cur, 0, sizeof(cur));
f[0] = 1;
for (int i = 0; i < 1 << n; ++i) {
if (!f[i]) {
continue;
}
for (int j = 0; j < n; ++j) {
if (cur[i] + nums[j] > s) {
break;
}
if ((i >> j & 1) == 0) {
f[i | 1 << j] = true;
cur[i | 1 << j] = (cur[i] + nums[j]) % s;
}
}
}
return f[(1 << n) - 1];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | func canPartitionKSubsets(nums []int, k int) bool {
s := 0
for _, x := range nums {
s += x
}
if s%k != 0 {
return false
}
s /= k
sort.Ints(nums)
n := len(nums)
f := make([]bool, 1<<n)
cur := make([]int, 1<<n)
f[0] = true
for i := 0; i < 1<<n; i++ {
if !f[i] {
continue
}
for j := 0; j < n; j++ {
if cur[i]+nums[j] > s {
break
}
if i>>j&1 == 0 {
f[i|1<<j] = true
cur[i|1<<j] = (cur[i] + nums[j]) % s
}
}
}
return f[(1<<n)-1]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | function canPartitionKSubsets(nums: number[], k: number): boolean {
let s = nums.reduce((a, b) => a + b);
if (s % k !== 0) {
return false;
}
s /= k;
nums.sort((a, b) => a - b);
const n = nums.length;
const f: boolean[] = Array(1 << n).fill(false);
f[0] = true;
const cur: number[] = Array(n).fill(0);
for (let i = 0; i < 1 << n; ++i) {
if (!f[i]) {
continue;
}
for (let j = 0; j < n; ++j) {
if (cur[i] + nums[j] > s) {
break;
}
if (((i >> j) & 1) === 0) {
f[i | (1 << j)] = true;
cur[i | (1 << j)] = (cur[i] + nums[j]) % s;
}
}
}
return f[(1 << n) - 1];
}
|