题目描述
给你一个大小为 m x n
的二进制矩阵 grid
。
岛屿 是由一些相邻的 1
(代表土地) 构成的组合,这里的「相邻」要求两个 1
必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid
的四个边缘都被 0
(代表水)包围着。
岛屿的面积是岛上值为 1
的单元格的数目。
计算并返回 grid
中最大的岛屿面积。如果没有岛屿,则返回面积为 0
。
示例 1:
输入:grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,1,1,0,1,0,0,0,0,0,0,0,0],[0,1,0,0,1,1,0,0,1,0,1,0,0],[0,1,0,0,1,1,0,0,1,1,1,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,0,0,0,0,0,0,1,1,0,0,0,0]]
输出:6
解释:答案不应该是 11 ,因为岛屿只能包含水平或垂直这四个方向上的 1 。
示例 2:
输入:grid = [[0,0,0,0,0,0,0,0]]
输出:0
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 50
grid[i][j]
为 0
或 1
解法
方法一:DFS
我们可以遍历每一个格子 $(i, j)$,从每个格子开始进行深度优先搜索,如果搜索到的格子是陆地,就将当前格子标记为已访问,并且继续搜索上、下、左、右四个方向的格子。搜索结束后,计算标记的陆地的数量,即为岛屿的面积。我们找出最大的岛屿面积即为答案。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是二维数组的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution:
def maxAreaOfIsland(self, grid: List[List[int]]) -> int:
def dfs(i: int, j: int) -> int:
if grid[i][j] == 0:
return 0
ans = 1
grid[i][j] = 0
dirs = (-1, 0, 1, 0, -1)
for a, b in pairwise(dirs):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n:
ans += dfs(x, y)
return ans
m, n = len(grid), len(grid[0])
return max(dfs(i, j) for i in range(m) for j in range(n))
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | class Solution {
private int m;
private int n;
private int[][] grid;
public int maxAreaOfIsland(int[][] grid) {
m = grid.length;
n = grid[0].length;
this.grid = grid;
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans = Math.max(ans, dfs(i, j));
}
}
return ans;
}
private int dfs(int i, int j) {
if (grid[i][j] == 0) {
return 0;
}
int ans = 1;
grid[i][j] = 0;
int[] dirs = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
ans += dfs(x, y);
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | class Solution {
public:
int maxAreaOfIsland(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
int dirs[5] = {-1, 0, 1, 0, -1};
int ans = 0;
function<int(int, int)> dfs = [&](int i, int j) {
if (grid[i][j] == 0) {
return 0;
}
int ans = 1;
grid[i][j] = 0;
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
ans += dfs(x, y);
}
}
return ans;
};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans = max(ans, dfs(i, j));
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | func maxAreaOfIsland(grid [][]int) (ans int) {
m, n := len(grid), len(grid[0])
dirs := [5]int{-1, 0, 1, 0, -1}
var dfs func(i, j int) int
dfs = func(i, j int) int {
if grid[i][j] == 0 {
return 0
}
ans := 1
grid[i][j] = 0
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n {
ans += dfs(x, y)
}
}
return ans
}
for i := range grid {
for j := range grid[i] {
ans = max(ans, dfs(i, j))
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | function maxAreaOfIsland(grid: number[][]): number {
const m = grid.length;
const n = grid[0].length;
const dirs = [-1, 0, 1, 0, -1];
const dfs = (i: number, j: number): number => {
if (grid[i][j] === 0) {
return 0;
}
let ans = 1;
grid[i][j] = 0;
for (let k = 0; k < 4; ++k) {
const [x, y] = [i + dirs[k], j + dirs[k + 1]];
if (x >= 0 && x < m && y >= 0 && y < n) {
ans += dfs(x, y);
}
}
return ans;
};
let ans = 0;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
ans = Math.max(ans, dfs(i, j));
}
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | impl Solution {
fn dfs(grid: &mut Vec<Vec<i32>>, i: usize, j: usize) -> i32 {
if i == grid.len() || j == grid[0].len() || grid[i][j] == 0 {
return 0;
}
grid[i][j] = 0;
let mut res = 1 + Self::dfs(grid, i + 1, j) + Self::dfs(grid, i, j + 1);
if i != 0 {
res += Self::dfs(grid, i - 1, j);
}
if j != 0 {
res += Self::dfs(grid, i, j - 1);
}
res
}
pub fn max_area_of_island(mut grid: Vec<Vec<i32>>) -> i32 {
let m = grid.len();
let n = grid[0].len();
let mut res = 0;
for i in 0..m {
for j in 0..n {
res = res.max(Self::dfs(&mut grid, i, j));
}
}
res
}
}
|