树
深度优先搜索
二叉树
题目描述
给定一个二叉树的 root
,返回 最长的路径的长度 ,这个路径中的 每个节点具有相同值 。 这条路径可以经过也可以不经过根节点。
两个节点之间的路径长度 由它们之间的边数表示。
示例 1:
输入: root = [5,4,5,1,1,5]
输出: 2
示例 2:
输入: root = [1,4,5,4,4,5]
输出: 2
提示:
树的节点数的范围是 [0, 104 ]
-1000 <= Node.val <= 1000
树的深度将不超过 1000
解法
方法一:DFS
我们设计一个函数 $\textit{dfs}(root)$,表示以 $\textit{root}$ 节点作为路径的其中一个端点,向下延伸的最长同值路径长度。
在 $\textit{dfs}(root)$ 中,我们首先递归调用 $\textit{dfs}(root.\textit{left})$ 和 $\textit{dfs}(root.\textit{right})$,得到两个返回值 $\textit{l}$ 和 $\textit{r}$。这两个返回值分别代表了以 $\textit{root}$ 节点的左孩子和右孩子为路径的其中一个端点,向下延伸的最长同值路径长度。
如果 $\textit{root}$ 存在左孩子且 $\textit{root}.\textit{val} = \textit{root}.\textit{left}.\textit{val}$,那么在 $\textit{root}$ 的左孩子为路径的其中一个端点,向下延伸的最长同值路径长度应为 $\textit{l} + 1$;否则,这个长度为 $0$。如果 $\textit{root}$ 存在右孩子且 $\textit{root}.\textit{val} = \textit{root}.\textit{right}.\textit{val}$,那么在 $\textit{root}$ 的右孩子为路径的其中一个端点,向下延伸的最长同值路径长度应为 $\textit{r} + 1$;否则,这个长度为 $0$。
在递归调用完左右孩子之后,我们更新答案为 $\max(\textit{ans}, \textit{l} + \textit{r})$,即以 $\textit{root}$ 为端点的路径经过 $\textit{root}$ 的最长同值路径长度。
最后,$\textit{dfs}(root)$ 函数返回以 $\textit{root}$ 为端点的向下延伸的最长同值路径长度,即 $\max(\textit{l}, \textit{r})$。
在主函数中,我们调用 $\textit{dfs}(root)$,即可得到答案。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def longestUnivaluePath ( self , root : Optional [ TreeNode ]) -> int :
def dfs ( root : Optional [ TreeNode ]) -> int :
if root is None :
return 0
l , r = dfs ( root . left ), dfs ( root . right )
l = l + 1 if root . left and root . left . val == root . val else 0
r = r + 1 if root . right and root . right . val == root . val else 0
nonlocal ans
ans = max ( ans , l + r )
return max ( l , r )
ans = 0
dfs ( root )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int ans ;
public int longestUnivaluePath ( TreeNode root ) {
dfs ( root );
return ans ;
}
private int dfs ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int l = dfs ( root . left );
int r = dfs ( root . right );
l = root . left != null && root . left . val == root . val ? l + 1 : 0 ;
r = root . right != null && root . right . val == root . val ? r + 1 : 0 ;
ans = Math . max ( ans , l + r );
return Math . max ( l , r );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int longestUnivaluePath ( TreeNode * root ) {
int ans = 0 ;
auto dfs = [ & ]( auto && dfs , TreeNode * root ) -> int {
if ( ! root ) {
return 0 ;
}
int l = dfs ( dfs , root -> left );
int r = dfs ( dfs , root -> right );
l = root -> left && root -> left -> val == root -> val ? l + 1 : 0 ;
r = root -> right && root -> right -> val == root -> val ? r + 1 : 0 ;
ans = max ( ans , l + r );
return max ( l , r );
};
dfs ( dfs , root );
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func longestUnivaluePath ( root * TreeNode ) ( ans int ) {
var dfs func ( * TreeNode ) int
dfs = func ( root * TreeNode ) int {
if root == nil {
return 0
}
l , r := dfs ( root . Left ), dfs ( root . Right )
if root . Left != nil && root . Left . Val == root . Val {
l ++
} else {
l = 0
}
if root . Right != nil && root . Right . Val == root . Val {
r ++
} else {
r = 0
}
ans = max ( ans , l + r )
return max ( l , r )
}
dfs ( root )
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function longestUnivaluePath ( root : TreeNode | null ) : number {
let ans : number = 0 ;
const dfs = ( root : TreeNode | null ) : number => {
if ( ! root ) {
return 0 ;
}
let [ l , r ] = [ dfs ( root . left ), dfs ( root . right )];
l = root . left && root . left . val === root . val ? l + 1 : 0 ;
r = root . right && root . right . val === root . val ? r + 1 : 0 ;
ans = Math . max ( ans , l + r );
return Math . max ( l , r );
};
dfs ( root );
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
fn dfs ( root : & Option < Rc < RefCell < TreeNode >>> , target : i32 , ans : & mut i32 ) -> i32 {
if root . is_none () {
return 0 ;
}
let root = root . as_ref (). unwrap (). borrow ();
let left = Self :: dfs ( & root . left , root . val , ans );
let right = Self :: dfs ( & root . right , root . val , ans );
* ans = ( * ans ). max ( left + right );
if root . val == target {
return left . max ( right ) + 1 ;
}
0
}
pub fn longest_univalue_path ( root : Option < Rc < RefCell < TreeNode >>> ) -> i32 {
if root . is_none () {
return 0 ;
}
let mut ans = 0 ;
Self :: dfs ( & root , root . as_ref (). unwrap (). borrow (). val , & mut ans );
ans
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var longestUnivaluePath = function ( root ) {
let ans = 0 ;
const dfs = root => {
if ( ! root ) {
return 0 ;
}
let [ l , r ] = [ dfs ( root . left ), dfs ( root . right )];
l = root . left && root . left . val === root . val ? l + 1 : 0 ;
r = root . right && root . right . val === root . val ? r + 1 : 0 ;
ans = Math . max ( ans , l + r );
return Math . max ( l , r );
};
dfs ( root );
return ans ;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
#define max(a, b) (((a) > (b)) ? (a) : (b))
int dfs ( struct TreeNode * root , int * ans ) {
if ( ! root ) {
return 0 ;
}
int l = dfs ( root -> left , ans );
int r = dfs ( root -> right , ans );
l = root -> left && root -> left -> val == root -> val ? l + 1 : 0 ;
r = root -> right && root -> right -> val == root -> val ? r + 1 : 0 ;
* ans = max ( * ans , l + r );
return max ( l , r );
}
int longestUnivaluePath ( struct TreeNode * root ) {
int ans = 0 ;
dfs ( root , & ans );
return ans ;
}
GitHub