题目描述
给定一个未排序的整数数组 nums
, 返回最长递增子序列的个数 。
注意 这个数列必须是 严格 递增的。
示例 1:
输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
示例 2:
输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。
提示:
1 <= nums.length <= 2000
-106 <= nums[i] <= 106
解法
方法一:动态规划
我们定义 $f[i]$ 表示以 $nums[i]$ 结尾的最长递增子序列的长度,定义 $cnt[i]$ 表示以 $nums[i]$ 结尾的最长递增子序列的个数。初始时 $f[i]=1$, $cnt[i]=1$。另外,定义 $mx$ 表示最长递增子序列的长度,定义 $ans$ 表示最长递增子序列的个数。
对于每一个 $nums[i]$,我们枚举 $nums[0:i-1]$ 中的所有元素 $nums[j]$,如果 $nums[j] \lt nums[i]$,则 $nums[i]$ 可以接在 $nums[j]$ 后面,形成一个更长的递增子序列。如果 $f[i] \lt f[j] + 1$,说明以 $nums[i]$ 结尾的最长递增子序列的长度增加了,那么我们需要更新 $f[i]=f[j]+1$,并且 $cnt[i]=cnt[j]$。如果 $f[i]=f[j]+1$,说明我们找到了一条长度与之前相同的最长递增子序列,那么我们需要将 $cnt[i]$ 增加 $cnt[j]$。然后,如果 $mx \lt f[i]$,说明最长递增子序列的长度增加了,那么我们需要更新 $mx=f[i]$,并且 $ans=cnt[i]$。如果 $mx=f[i]$,说明我们找到了一条长度与之前相同的最长递增子序列,那么我们需要将 $ans$ 增加 $cnt[i]$。
最后,我们返回 $ans$ 即可。
时间复杂度 $O(n^2)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution:
def findNumberOfLIS(self, nums: List[int]) -> int:
n = len(nums)
f = [1] * n
cnt = [1] * n
mx = 0
for i in range(n):
for j in range(i):
if nums[j] < nums[i]:
if f[i] < f[j] + 1:
f[i] = f[j] + 1
cnt[i] = cnt[j]
elif f[i] == f[j] + 1:
cnt[i] += cnt[j]
if mx < f[i]:
mx = f[i]
ans = cnt[i]
elif mx == f[i]:
ans += cnt[i]
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | class Solution {
public int findNumberOfLIS(int[] nums) {
int n = nums.length;
int[] f = new int[n];
int[] cnt = new int[n];
int mx = 0, ans = 0;
for (int i = 0; i < n; ++i) {
f[i] = 1;
cnt[i] = 1;
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
if (f[i] < f[j] + 1) {
f[i] = f[j] + 1;
cnt[i] = cnt[j];
} else if (f[i] == f[j] + 1) {
cnt[i] += cnt[j];
}
}
}
if (mx < f[i]) {
mx = f[i];
ans = cnt[i];
} else if (mx == f[i]) {
ans += cnt[i];
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size();
int mx = 0, ans = 0;
vector<int> f(n, 1);
vector<int> cnt(n, 1);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
if (f[i] < f[j] + 1) {
f[i] = f[j] + 1;
cnt[i] = cnt[j];
} else if (f[i] == f[j] + 1) {
cnt[i] += cnt[j];
}
}
}
if (mx < f[i]) {
mx = f[i];
ans = cnt[i];
} else if (mx == f[i]) {
ans += cnt[i];
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | func findNumberOfLIS(nums []int) (ans int) {
n, mx := len(nums), 0
f := make([]int, n)
cnt := make([]int, n)
for i, x := range nums {
for j, y := range nums[:i] {
if y < x {
if f[i] < f[j]+1 {
f[i] = f[j] + 1
cnt[i] = cnt[j]
} else if f[i] == f[j]+1 {
cnt[i] += cnt[j]
}
}
}
if mx < f[i] {
mx = f[i]
ans = cnt[i]
} else if mx == f[i] {
ans += cnt[i]
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | function findNumberOfLIS(nums: number[]): number {
const n = nums.length;
let [ans, mx] = [0, 0];
const f: number[] = Array(n).fill(1);
const cnt: number[] = Array(n).fill(1);
for (let i = 0; i < n; ++i) {
for (let j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
if (f[i] < f[j] + 1) {
f[i] = f[j] + 1;
cnt[i] = cnt[j];
} else if (f[i] === f[j] + 1) {
cnt[i] += cnt[j];
}
}
}
if (mx < f[i]) {
mx = f[i];
ans = cnt[i];
} else if (mx === f[i]) {
ans += cnt[i];
}
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | impl Solution {
pub fn find_number_of_lis(nums: Vec<i32>) -> i32 {
let n = nums.len();
let mut ans = 0;
let mut mx = 0;
let mut f = vec![1; n];
let mut cnt = vec![1; n];
for i in 0..n {
for j in 0..i {
if nums[j] < nums[i] {
if f[i] < f[j] + 1 {
f[i] = f[j] + 1;
cnt[i] = cnt[j];
} else if f[i] == f[j] + 1 {
cnt[i] += cnt[j];
}
}
}
if mx < f[i] {
mx = f[i];
ans = cnt[i];
} else if mx == f[i] {
ans += cnt[i];
}
}
ans
}
}
|
方法二:树状数组
我们可以用树状数组维护前缀区间的最长递增子序列的长度和个数。我们将数组 $nums$ 中的元素去重并排序,得到数组 $arr$,然后我们枚举 $nums$ 中的每一个元素 $x$,在数组 $arr$ 中二分查找 $x$ 的位置 $i$,然后查询 $[1,i-1]$ 的最长递增子序列的长度和个数,记为 $v$ 和 $cnt$,然后更新 $[i]$ 的最长递增子序列的长度和个数为 $v+1$ 和 $\max(cnt,1)$。最后,我们查询 $[1,m]$ 的最长递增子序列的长度和个数,其中 $m$ 是数组 $arr$ 的长度,即为答案。
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 | class BinaryIndexedTree:
__slots__ = ["n", "c", "d"]
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
self.d = [0] * (n + 1)
def update(self, x, v, cnt):
while x <= self.n:
if self.c[x] < v:
self.c[x] = v
self.d[x] = cnt
elif self.c[x] == v:
self.d[x] += cnt
x += x & -x
def query(self, x):
v = cnt = 0
while x:
if self.c[x] > v:
v = self.c[x]
cnt = self.d[x]
elif self.c[x] == v:
cnt += self.d[x]
x -= x & -x
return v, cnt
class Solution:
def findNumberOfLIS(self, nums: List[int]) -> int:
arr = sorted(set(nums))
m = len(arr)
tree = BinaryIndexedTree(m)
for x in nums:
i = bisect_left(arr, x) + 1
v, cnt = tree.query(i - 1)
tree.update(i, v + 1, max(cnt, 1))
return tree.query(m)[1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | class BinaryIndexedTree {
private int n;
private int[] c;
private int[] d;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
d = new int[n + 1];
}
public void update(int x, int v, int cnt) {
while (x <= n) {
if (c[x] < v) {
c[x] = v;
d[x] = cnt;
} else if (c[x] == v) {
d[x] += cnt;
}
x += x & -x;
}
}
public int[] query(int x) {
int v = 0, cnt = 0;
while (x > 0) {
if (c[x] > v) {
v = c[x];
cnt = d[x];
} else if (c[x] == v) {
cnt += d[x];
}
x -= x & -x;
}
return new int[] {v, cnt};
}
}
public class Solution {
public int findNumberOfLIS(int[] nums) {
// int[] arr = Arrays.stream(nums).distinct().sorted().toArray();
int[] arr = nums.clone();
Arrays.sort(arr);
int m = arr.length;
BinaryIndexedTree tree = new BinaryIndexedTree(m);
for (int x : nums) {
int i = Arrays.binarySearch(arr, x) + 1;
int[] t = tree.query(i - 1);
int v = t[0];
int cnt = t[1];
tree.update(i, v + 1, Math.max(cnt, 1));
}
return tree.query(m)[1];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | class BinaryIndexedTree {
private:
int n;
vector<int> c;
vector<int> d;
public:
BinaryIndexedTree(int n)
: n(n)
, c(n + 1, 0)
, d(n + 1, 0) {}
void update(int x, int v, int cnt) {
while (x <= n) {
if (c[x] < v) {
c[x] = v;
d[x] = cnt;
} else if (c[x] == v) {
d[x] += cnt;
}
x += x & -x;
}
}
pair<int, int> query(int x) {
int v = 0, cnt = 0;
while (x > 0) {
if (c[x] > v) {
v = c[x];
cnt = d[x];
} else if (c[x] == v) {
cnt += d[x];
}
x -= x & -x;
}
return {v, cnt};
}
};
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
vector<int> arr = nums;
sort(arr.begin(), arr.end());
arr.erase(unique(arr.begin(), arr.end()), arr.end());
int m = arr.size();
BinaryIndexedTree tree(m);
for (int x : nums) {
auto it = lower_bound(arr.begin(), arr.end(), x);
int i = distance(arr.begin(), it) + 1;
auto [v, cnt] = tree.query(i - 1);
tree.update(i, v + 1, max(cnt, 1));
}
return tree.query(m).second;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 | type BinaryIndexedTree struct {
n int
c []int
d []int
}
func newBinaryIndexedTree(n int) BinaryIndexedTree {
return BinaryIndexedTree{
n: n,
c: make([]int, n+1),
d: make([]int, n+1),
}
}
func (bit *BinaryIndexedTree) update(x, v, cnt int) {
for x <= bit.n {
if bit.c[x] < v {
bit.c[x] = v
bit.d[x] = cnt
} else if bit.c[x] == v {
bit.d[x] += cnt
}
x += x & -x
}
}
func (bit *BinaryIndexedTree) query(x int) (int, int) {
v, cnt := 0, 0
for x > 0 {
if bit.c[x] > v {
v = bit.c[x]
cnt = bit.d[x]
} else if bit.c[x] == v {
cnt += bit.d[x]
}
x -= x & -x
}
return v, cnt
}
func findNumberOfLIS(nums []int) int {
arr := make([]int, len(nums))
copy(arr, nums)
sort.Ints(arr)
m := len(arr)
tree := newBinaryIndexedTree(m)
for _, x := range nums {
i := sort.SearchInts(arr, x) + 1
v, cnt := tree.query(i - 1)
tree.update(i, v+1, max(cnt, 1))
}
_, ans := tree.query(m)
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 | class BinaryIndexedTree {
private n: number;
private c: number[];
private d: number[];
constructor(n: number) {
this.n = n;
this.c = Array(n + 1).fill(0);
this.d = Array(n + 1).fill(0);
}
update(x: number, v: number, cnt: number): void {
while (x <= this.n) {
if (this.c[x] < v) {
this.c[x] = v;
this.d[x] = cnt;
} else if (this.c[x] === v) {
this.d[x] += cnt;
}
x += x & -x;
}
}
query(x: number): [number, number] {
let v = 0;
let cnt = 0;
while (x > 0) {
if (this.c[x] > v) {
v = this.c[x];
cnt = this.d[x];
} else if (this.c[x] === v) {
cnt += this.d[x];
}
x -= x & -x;
}
return [v, cnt];
}
}
function findNumberOfLIS(nums: number[]): number {
const arr: number[] = [...new Set(nums)].sort((a, b) => a - b);
const m: number = arr.length;
const tree: BinaryIndexedTree = new BinaryIndexedTree(m);
const search = (x: number): number => {
let l = 0,
r = arr.length;
while (l < r) {
const mid = (l + r) >> 1;
if (arr[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l + 1;
};
for (const x of nums) {
const i: number = search(x);
const [v, cnt]: [number, number] = tree.query(i - 1);
tree.update(i, v + 1, Math.max(cnt, 1));
}
return tree.query(m)[1];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 | struct BinaryIndexedTree {
n: usize,
c: Vec<i32>,
d: Vec<i32>,
}
impl BinaryIndexedTree {
fn new(n: usize) -> BinaryIndexedTree {
BinaryIndexedTree {
n,
c: vec![0; n + 1],
d: vec![0; n + 1],
}
}
fn update(&mut self, x: usize, v: i32, cnt: i32) {
let mut x = x as usize;
while x <= self.n {
if self.c[x] < v {
self.c[x] = v;
self.d[x] = cnt;
} else if self.c[x] == v {
self.d[x] += cnt;
}
x += x & x.wrapping_neg();
}
}
fn query(&self, mut x: usize) -> (i32, i32) {
let (mut v, mut cnt) = (0, 0);
while x > 0 {
if self.c[x] > v {
v = self.c[x];
cnt = self.d[x];
} else if self.c[x] == v {
cnt += self.d[x];
}
x -= x & x.wrapping_neg();
}
(v, cnt)
}
}
impl Solution {
pub fn find_number_of_lis(nums: Vec<i32>) -> i32 {
let mut arr: Vec<i32> = nums.iter().cloned().collect();
arr.sort();
let m = arr.len();
let mut tree = BinaryIndexedTree::new(m);
for x in nums.iter() {
if let Ok(i) = arr.binary_search(x) {
let (v, cnt) = tree.query(i);
tree.update(i + 1, v + 1, cnt.max(1));
}
}
let (_, ans) = tree.query(m);
ans
}
}
|