树
深度优先搜索
哈希表
二叉树
题目描述
给你一棵二叉树的根节点 root
,返回所有 重复的子树 。
对于同一类的重复子树,你只需要返回其中任意 一棵 的根结点即可。
如果两棵树具有 相同的结构 和 相同的结点值 ,则认为二者是 重复 的。
示例 1:
输入: root = [1,2,3,4,null,2,4,null,null,4]
输出: [[2,4],[4]]
示例 2:
输入: root = [2,1,1]
输出: [[1]]
示例 3:
输入: root = [2,2,2,3,null,3,null]
输出: [[2,3],[3]]
提示:
树中的结点数在 [1, 5000]
范围内。
-200 <= Node.val <= 200
解法
方法一:后序遍历
后序遍历,序列化每个子树,用哈希表判断序列化的字符串出现次数是否等于 2
,若是,说明这棵子树重复。
Python3 Java C++ Go TypeScript Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def findDuplicateSubtrees (
self , root : Optional [ TreeNode ]
) -> List [ Optional [ TreeNode ]]:
def dfs ( root ):
if root is None :
return '#'
v = f ' { root . val } , { dfs ( root . left ) } , { dfs ( root . right ) } '
counter [ v ] += 1
if counter [ v ] == 2 :
ans . append ( root )
return v
ans = []
counter = Counter ()
dfs ( root )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Map < String , Integer > counter ;
private List < TreeNode > ans ;
public List < TreeNode > findDuplicateSubtrees ( TreeNode root ) {
counter = new HashMap <> ();
ans = new ArrayList <> ();
dfs ( root );
return ans ;
}
private String dfs ( TreeNode root ) {
if ( root == null ) {
return "#" ;
}
String v = root . val + "," + dfs ( root . left ) + "," + dfs ( root . right );
counter . put ( v , counter . getOrDefault ( v , 0 ) + 1 );
if ( counter . get ( v ) == 2 ) {
ans . add ( root );
}
return v ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
unordered_map < string , int > counter ;
vector < TreeNode *> ans ;
vector < TreeNode *> findDuplicateSubtrees ( TreeNode * root ) {
dfs ( root );
return ans ;
}
string dfs ( TreeNode * root ) {
if ( ! root ) return "#" ;
string v = to_string ( root -> val ) + "," + dfs ( root -> left ) + "," + dfs ( root -> right );
++ counter [ v ];
if ( counter [ v ] == 2 ) ans . push_back ( root );
return v ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func findDuplicateSubtrees ( root * TreeNode ) [] * TreeNode {
var ans [] * TreeNode
counter := make ( map [ string ] int )
var dfs func ( root * TreeNode ) string
dfs = func ( root * TreeNode ) string {
if root == nil {
return "#"
}
v := strconv . Itoa ( root . Val ) + "," + dfs ( root . Left ) + "," + dfs ( root . Right )
counter [ v ] ++
if counter [ v ] == 2 {
ans = append ( ans , root )
}
return v
}
dfs ( root )
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function findDuplicateSubtrees ( root : TreeNode | null ) : Array < TreeNode | null > {
const map = new Map < string , number > ();
const res = [];
const dfs = ( root : TreeNode | null ) => {
if ( root == null ) {
return '#' ;
}
const { val , left , right } = root ;
const s = ` ${ val } , ${ dfs ( left ) } , ${ dfs ( right ) } ` ;
map . set ( s , ( map . get ( s ) ?? 0 ) + 1 );
if ( map . get ( s ) === 2 ) {
res . push ( root );
}
return s ;
};
dfs ( root );
return res ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: collections :: HashMap ;
use std :: rc :: Rc ;
impl Solution {
fn dfs (
root : & Option < Rc < RefCell < TreeNode >>> ,
map : & mut HashMap < String , i32 > ,
res : & mut Vec < Option < Rc < RefCell < TreeNode >>>> ,
) -> String {
if root . is_none () {
return String :: from ( '#' );
}
let s = {
let root = root . as_ref (). unwrap (). as_ref (). borrow ();
format! (
"{},{},{}" ,
root . val . to_string (),
Self :: dfs ( & root . left , map , res ),
Self :: dfs ( & root . right , map , res )
)
};
* map . entry ( s . clone ()). or_insert ( 0 ) += 1 ;
if * map . get ( & s ). unwrap () == 2 {
res . push ( root . clone ());
}
return s ;
}
pub fn find_duplicate_subtrees (
root : Option < Rc < RefCell < TreeNode >>> ,
) -> Vec < Option < Rc < RefCell < TreeNode >>>> {
let mut map = HashMap :: new ();
let mut res = Vec :: new ();
Self :: dfs ( & root , & mut map , & mut res );
res
}
}
GitHub