题目描述
给定一个包含非负整数的 m x n
网格 grid
,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 200
解法
方法一:动态规划
我们定义 $f[i][j]$ 表示从左上角走到 $(i, j)$ 位置的最小路径和。初始时 $f[0][0] = grid[0][0]$,答案为 $f[m - 1][n - 1]$。
考虑 $f[i][j]$:
- 如果 $j = 0$,那么 $f[i][j] = f[i - 1][j] + grid[i][j]$;
- 如果 $i = 0$,那么 $f[i][j] = f[i][j - 1] + grid[i][j]$;
- 如果 $i \gt 0$ 且 $j \gt 0$,那么 $f[i][j] = \min(f[i - 1][j], f[i][j - 1]) + grid[i][j]$。
最后返回 $f[m - 1][n - 1]$ 即可。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13 | class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
f = [[0] * n for _ in range(m)]
f[0][0] = grid[0][0]
for i in range(1, m):
f[i][0] = f[i - 1][0] + grid[i][0]
for j in range(1, n):
f[0][j] = f[0][j - 1] + grid[0][j]
for i in range(1, m):
for j in range(1, n):
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j]
return f[-1][-1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[][] f = new int[m][n];
f[0][0] = grid[0][0];
for (int i = 1; i < m; ++i) {
f[i][0] = f[i - 1][0] + grid[i][0];
}
for (int j = 1; j < n; ++j) {
f[0][j] = f[0][j - 1] + grid[0][j];
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
}
}
return f[m - 1][n - 1];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
int f[m][n];
f[0][0] = grid[0][0];
for (int i = 1; i < m; ++i) {
f[i][0] = f[i - 1][0] + grid[i][0];
}
for (int j = 1; j < n; ++j) {
f[0][j] = f[0][j - 1] + grid[0][j];
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
}
}
return f[m - 1][n - 1];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | func minPathSum(grid [][]int) int {
m, n := len(grid), len(grid[0])
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
}
f[0][0] = grid[0][0]
for i := 1; i < m; i++ {
f[i][0] = f[i-1][0] + grid[i][0]
}
for j := 1; j < n; j++ {
f[0][j] = f[0][j-1] + grid[0][j]
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
f[i][j] = min(f[i-1][j], f[i][j-1]) + grid[i][j]
}
}
return f[m-1][n-1]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | function minPathSum(grid: number[][]): number {
const m = grid.length;
const n = grid[0].length;
const f: number[][] = Array(m)
.fill(0)
.map(() => Array(n).fill(0));
f[0][0] = grid[0][0];
for (let i = 1; i < m; ++i) {
f[i][0] = f[i - 1][0] + grid[i][0];
}
for (let j = 1; j < n; ++j) {
f[0][j] = f[0][j - 1] + grid[0][j];
}
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
}
}
return f[m - 1][n - 1];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | impl Solution {
pub fn min_path_sum(mut grid: Vec<Vec<i32>>) -> i32 {
let m = grid.len();
let n = grid[0].len();
for i in 1..m {
grid[i][0] += grid[i - 1][0];
}
for i in 1..n {
grid[0][i] += grid[0][i - 1];
}
for i in 1..m {
for j in 1..n {
grid[i][j] += grid[i][j - 1].min(grid[i - 1][j]);
}
}
grid[m - 1][n - 1]
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | /**
* @param {number[][]} grid
* @return {number}
*/
var minPathSum = function (grid) {
const m = grid.length;
const n = grid[0].length;
const f = Array(m)
.fill(0)
.map(() => Array(n).fill(0));
f[0][0] = grid[0][0];
for (let i = 1; i < m; ++i) {
f[i][0] = f[i - 1][0] + grid[i][0];
}
for (let j = 1; j < n; ++j) {
f[0][j] = f[0][j - 1] + grid[0][j];
}
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
}
}
return f[m - 1][n - 1];
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | public class Solution {
public int MinPathSum(int[][] grid) {
int m = grid.Length, n = grid[0].Length;
int[,] f = new int[m, n];
f[0, 0] = grid[0][0];
for (int i = 1; i < m; ++i) {
f[i, 0] = f[i - 1, 0] + grid[i][0];
}
for (int j = 1; j < n; ++j) {
f[0, j] = f[0, j - 1] + grid[0][j];
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[i, j] = Math.Min(f[i - 1, j], f[i, j - 1]) + grid[i][j];
}
}
return f[m - 1, n - 1];
}
}
|