
题目描述
给定一个 m x n
的整数数组 grid
。一个机器人初始位于 左上角(即 grid[0][0]
)。机器人尝试移动到 右下角(即 grid[m - 1][n - 1]
)。机器人每次只能向下或者向右移动一步。
网格中的障碍物和空位置分别用 1
和 0
来表示。机器人的移动路径中不能包含 任何 有障碍物的方格。
返回机器人能够到达右下角的不同路径数量。
测试用例保证答案小于等于 2 * 109
。
示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1
提示:
m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j]
为 0
或 1
解法
方法一:记忆化搜索
我们设计一个函数 \(\textit{dfs}(i, j)\) 表示从网格 \((i, j)\) 到网格 \((m - 1, n - 1)\) 的路径数。其中 \(m\) 和 \(n\) 分别是网格的行数和列数。
函数 \(\textit{dfs}(i, j)\) 的执行过程如下:
- 如果 \(i \ge m\) 或者 \(j \ge n\),或者 \(\textit{obstacleGrid}[i][j] = 1\),则路径数为 \(0\);
- 如果 \(i = m - 1\) 且 \(j = n - 1\),则路径数为 \(1\);
- 否则,路径数为 \(\textit{dfs}(i + 1, j) + \textit{dfs}(i, j + 1)\)。
为了避免重复计算,我们可以使用记忆化搜索的方法。
时间复杂度 \(O(m \times n)\),空间复杂度 \(O(m \times n)\)。其中 \(m\) 和 \(n\) 分别是网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
@cache
def dfs(i: int, j: int) -> int:
if i >= m or j >= n or obstacleGrid[i][j]:
return 0
if i == m - 1 and j == n - 1:
return 1
return dfs(i + 1, j) + dfs(i, j + 1)
m, n = len(obstacleGrid), len(obstacleGrid[0])
return dfs(0, 0)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | class Solution {
private Integer[][] f;
private int[][] obstacleGrid;
private int m;
private int n;
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
m = obstacleGrid.length;
n = obstacleGrid[0].length;
this.obstacleGrid = obstacleGrid;
f = new Integer[m][n];
return dfs(0, 0);
}
private int dfs(int i, int j) {
if (i >= m || j >= n || obstacleGrid[i][j] == 1) {
return 0;
}
if (i == m - 1 && j == n - 1) {
return 1;
}
if (f[i][j] == null) {
f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
}
return f[i][j];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<vector<int>> f(m, vector<int>(n, -1));
auto dfs = [&](this auto&& dfs, int i, int j) {
if (i >= m || j >= n || obstacleGrid[i][j]) {
return 0;
}
if (i == m - 1 && j == n - 1) {
return 1;
}
if (f[i][j] == -1) {
f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
}
return f[i][j];
};
return dfs(0, 0);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | func uniquePathsWithObstacles(obstacleGrid [][]int) int {
m, n := len(obstacleGrid), len(obstacleGrid[0])
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
for j := range f[i] {
f[i][j] = -1
}
}
var dfs func(i, j int) int
dfs = func(i, j int) int {
if i >= m || j >= n || obstacleGrid[i][j] == 1 {
return 0
}
if i == m-1 && j == n-1 {
return 1
}
if f[i][j] == -1 {
f[i][j] = dfs(i+1, j) + dfs(i, j+1)
}
return f[i][j]
}
return dfs(0, 0)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const f: number[][] = Array.from({ length: m }, () => Array(n).fill(-1));
const dfs = (i: number, j: number): number => {
if (i >= m || j >= n || obstacleGrid[i][j] === 1) {
return 0;
}
if (i === m - 1 && j === n - 1) {
return 1;
}
if (f[i][j] === -1) {
f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
}
return f[i][j];
};
return dfs(0, 0);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | impl Solution {
pub fn unique_paths_with_obstacles(obstacle_grid: Vec<Vec<i32>>) -> i32 {
let m = obstacle_grid.len();
let n = obstacle_grid[0].len();
let mut f = vec![vec![-1; n]; m];
Self::dfs(0, 0, &obstacle_grid, &mut f)
}
fn dfs(i: usize, j: usize, obstacle_grid: &Vec<Vec<i32>>, f: &mut Vec<Vec<i32>>) -> i32 {
let m = obstacle_grid.len();
let n = obstacle_grid[0].len();
if i >= m || j >= n || obstacle_grid[i][j] == 1 {
return 0;
}
if i == m - 1 && j == n - 1 {
return 1;
}
if f[i][j] != -1 {
return f[i][j];
}
let down = Self::dfs(i + 1, j, obstacle_grid, f);
let right = Self::dfs(i, j + 1, obstacle_grid, f);
f[i][j] = down + right;
f[i][j]
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | /**
* @param {number[][]} obstacleGrid
* @return {number}
*/
var uniquePathsWithObstacles = function (obstacleGrid) {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const f = Array.from({ length: m }, () => Array(n).fill(-1));
const dfs = (i, j) => {
if (i >= m || j >= n || obstacleGrid[i][j] === 1) {
return 0;
}
if (i === m - 1 && j === n - 1) {
return 1;
}
if (f[i][j] === -1) {
f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
}
return f[i][j];
};
return dfs(0, 0);
};
|
方法二:动态规划
我们可以使用动态规划的方法,定义一个二维数组 \(f\),其中 \(f[i][j]\) 表示从网格 \((0,0)\) 到网格 \((i,j)\) 的路径数。
我们首先初始化 \(f\) 的第一列和第一行的所有值,然后遍历其它行和列,有两种情况:
- 若 \(\textit{obstacleGrid}[i][j] = 1\),说明路径数为 \(0\),那么 \(f[i][j] = 0\);
- 若 \(\textit{obstacleGrid}[i][j] = 0\),则 \(f[i][j] = f[i - 1][j] + f[i][j - 1]\)。
最后返回 \(f[m - 1][n - 1]\) 即可。
时间复杂度 \(O(m \times n)\),空间复杂度 \(O(m \times n)\)。其中 \(m\) 和 \(n\) 分别是网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m, n = len(obstacleGrid), len(obstacleGrid[0])
f = [[0] * n for _ in range(m)]
for i in range(m):
if obstacleGrid[i][0] == 1:
break
f[i][0] = 1
for j in range(n):
if obstacleGrid[0][j] == 1:
break
f[0][j] = 1
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 0:
f[i][j] = f[i - 1][j] + f[i][j - 1]
return f[-1][-1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length, n = obstacleGrid[0].length;
int[][] f = new int[m][n];
for (int i = 0; i < m && obstacleGrid[i][0] == 0; ++i) {
f[i][0] = 1;
}
for (int j = 0; j < n && obstacleGrid[0][j] == 0; ++j) {
f[0][j] = 1;
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
if (obstacleGrid[i][j] == 0) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<vector<int>> f(m, vector<int>(n));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; ++i) {
f[i][0] = 1;
}
for (int j = 0; j < n && obstacleGrid[0][j] == 0; ++j) {
f[0][j] = 1;
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
if (obstacleGrid[i][j] == 0) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | func uniquePathsWithObstacles(obstacleGrid [][]int) int {
m, n := len(obstacleGrid), len(obstacleGrid[0])
f := make([][]int, m)
for i := 0; i < m; i++ {
f[i] = make([]int, n)
}
for i := 0; i < m && obstacleGrid[i][0] == 0; i++ {
f[i][0] = 1
}
for j := 0; j < n && obstacleGrid[0][j] == 0; j++ {
f[0][j] = 1
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
if obstacleGrid[i][j] == 0 {
f[i][j] = f[i-1][j] + f[i][j-1]
}
}
}
return f[m-1][n-1]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const f = Array.from({ length: m }, () => Array(n).fill(0));
for (let i = 0; i < m; i++) {
if (obstacleGrid[i][0] === 1) {
break;
}
f[i][0] = 1;
}
for (let i = 0; i < n; i++) {
if (obstacleGrid[0][i] === 1) {
break;
}
f[0][i] = 1;
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
if (obstacleGrid[i][j] === 1) {
continue;
}
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | impl Solution {
pub fn unique_paths_with_obstacles(obstacle_grid: Vec<Vec<i32>>) -> i32 {
let m = obstacle_grid.len();
let n = obstacle_grid[0].len();
let mut f = vec![vec![0; n]; m];
for i in 0..n {
if obstacle_grid[0][i] == 1 {
break;
}
f[0][i] = 1;
}
for i in 0..m {
if obstacle_grid[i][0] == 1 {
break;
}
f[i][0] = 1;
}
for i in 1..m {
for j in 1..n {
if obstacle_grid[i][j] == 1 {
continue;
}
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
f[m - 1][n - 1]
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | /**
* @param {number[][]} obstacleGrid
* @return {number}
*/
var uniquePathsWithObstacles = function (obstacleGrid) {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const f = Array.from({ length: m }, () => Array(n).fill(0));
for (let i = 0; i < m; i++) {
if (obstacleGrid[i][0] === 1) {
break;
}
f[i][0] = 1;
}
for (let i = 0; i < n; i++) {
if (obstacleGrid[0][i] === 1) {
break;
}
f[0][i] = 1;
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
if (obstacleGrid[i][j] === 1) {
continue;
}
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
};
|