题目描述
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
提示:
1 <= m, n <= 100
- 题目数据保证答案小于等于
2 * 109
解法
方法一:动态规划
我们定义 $f[i][j]$ 表示从左上角走到 $(i, j)$ 的路径数量,初始时 $f[0][0] = 1$,答案为 $f[m - 1][n - 1]$。
考虑 $f[i][j]$:
- 如果 $i \gt 0$,那么 $f[i][j]$ 可以从 $f[i - 1][j]$ 走一步到达,因此 $f[i][j] = f[i][j] + f[i - 1][j]$;
- 如果 $j \gt 0$,那么 $f[i][j]$ 可以从 $f[i][j - 1]$ 走一步到达,因此 $f[i][j] = f[i][j] + f[i][j - 1]$。
因此,我们有如下的状态转移方程:
$$
f[i][j] = \begin{cases}
1 & i = 0, j = 0 \
f[i - 1][j] + f[i][j - 1] & \textit{otherwise}
\end{cases}
$$
最终的答案即为 $f[m - 1][n - 1]$。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是网格的行数和列数。
我们注意到 $f[i][j]$ 仅与 $f[i - 1][j]$ 和 $f[i][j - 1]$ 有关,因此我们优化掉第一维空间,仅保留第二维空间,得到时间复杂度 $O(m \times n)$,空间复杂度 $O(n)$ 的实现。
| class Solution:
def uniquePaths(self, m: int, n: int) -> int:
f = [[0] * n for _ in range(m)]
f[0][0] = 1
for i in range(m):
for j in range(n):
if i:
f[i][j] += f[i - 1][j]
if j:
f[i][j] += f[i][j - 1]
return f[-1][-1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
public int uniquePaths(int m, int n) {
var f = new int[m][n];
f[0][0] = 1;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i > 0) {
f[i][j] += f[i - 1][j];
}
if (j > 0) {
f[i][j] += f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> f(m, vector<int>(n));
f[0][0] = 1;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i) {
f[i][j] += f[i - 1][j];
}
if (j) {
f[i][j] += f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | func uniquePaths(m int, n int) int {
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
}
f[0][0] = 1
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if i > 0 {
f[i][j] += f[i-1][j]
}
if j > 0 {
f[i][j] += f[i][j-1]
}
}
}
return f[m-1][n-1]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | function uniquePaths(m: number, n: number): number {
const f: number[][] = Array(m)
.fill(0)
.map(() => Array(n).fill(0));
f[0][0] = 1;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (i > 0) {
f[i][j] += f[i - 1][j];
}
if (j > 0) {
f[i][j] += f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
}
|
1
2
3
4
5
6
7
8
9
10
11
12 | impl Solution {
pub fn unique_paths(m: i32, n: i32) -> i32 {
let (m, n) = (m as usize, n as usize);
let mut f = vec![1; n];
for i in 1..m {
for j in 1..n {
f[j] += f[j - 1];
}
}
f[n - 1]
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | /**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function (m, n) {
const f = Array(m)
.fill(0)
.map(() => Array(n).fill(0));
f[0][0] = 1;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (i > 0) {
f[i][j] += f[i - 1][j];
}
if (j > 0) {
f[i][j] += f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
};
|
方法二
| class Solution:
def uniquePaths(self, m: int, n: int) -> int:
f = [[1] * n for _ in range(m)]
for i in range(1, m):
for j in range(1, n):
f[i][j] = f[i - 1][j] + f[i][j - 1]
return f[-1][-1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution {
public int uniquePaths(int m, int n) {
var f = new int[m][n];
for (var g : f) {
Arrays.fill(g, 1);
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; j++) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> f(m, vector<int>(n, 1));
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | func uniquePaths(m int, n int) int {
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
for j := range f[i] {
f[i][j] = 1
}
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
f[i][j] = f[i-1][j] + f[i][j-1]
}
}
return f[m-1][n-1]
}
|
| function uniquePaths(m: number, n: number): number {
const f: number[][] = Array(m)
.fill(0)
.map(() => Array(n).fill(1));
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | /**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function (m, n) {
const f = Array(m)
.fill(0)
.map(() => Array(n).fill(1));
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
};
|
方法三
| class Solution:
def uniquePaths(self, m: int, n: int) -> int:
f = [1] * n
for _ in range(1, m):
for j in range(1, n):
f[j] += f[j - 1]
return f[-1]
|
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution {
public int uniquePaths(int m, int n) {
int[] f = new int[n];
Arrays.fill(f, 1);
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> f(n, 1);
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12 | func uniquePaths(m int, n int) int {
f := make([]int, n+1)
for i := range f {
f[i] = 1
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
f[j] += f[j-1]
}
}
return f[n-1]
}
|
| function uniquePaths(m: number, n: number): number {
const f: number[] = Array(n).fill(1);
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | /**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function (m, n) {
const f = Array(n).fill(1);
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
};
|