树
深度优先搜索
广度优先搜索
二叉树
题目描述
给你两棵二叉树: root1
和 root2
。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
注意: 合并过程必须从两个树的根节点开始。
示例 1:
输入: root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出: [3,4,5,5,4,null,7]
示例 2:
输入: root1 = [1], root2 = [1,2]
输出: [2,2]
提示:
两棵树中的节点数目在范围 [0, 2000]
内
-104 <= Node.val <= 104
解法
方法一:递归
递归合并两棵树的节点。
如果其中一棵树的当前节点为空,则返回另一棵树的当前节点作为合并后节点。
如果两棵树的当前节点都不为空,则将它们的值相加作为合并后节点的新值,然后递归合并它们的左右子节点。
时间复杂度 $O(m)$,空间复杂度 $O(m)$。其中 $m$ 是两棵树的节点数的最小值。
Python3 Java C++ Go TypeScript Rust JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def mergeTrees (
self , root1 : Optional [ TreeNode ], root2 : Optional [ TreeNode ]
) -> Optional [ TreeNode ]:
if root1 is None :
return root2
if root2 is None :
return root1
node = TreeNode ( root1 . val + root2 . val )
node . left = self . mergeTrees ( root1 . left , root2 . left )
node . right = self . mergeTrees ( root1 . right , root2 . right )
return node
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode mergeTrees ( TreeNode root1 , TreeNode root2 ) {
if ( root1 == null ) {
return root2 ;
}
if ( root2 == null ) {
return root1 ;
}
TreeNode node = new TreeNode ( root1 . val + root2 . val );
node . left = mergeTrees ( root1 . left , root2 . left );
node . right = mergeTrees ( root1 . right , root2 . right );
return node ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
TreeNode * mergeTrees ( TreeNode * root1 , TreeNode * root2 ) {
if ( ! root1 ) return root2 ;
if ( ! root2 ) return root1 ;
TreeNode * node = new TreeNode ( root1 -> val + root2 -> val );
node -> left = mergeTrees ( root1 -> left , root2 -> left );
node -> right = mergeTrees ( root1 -> right , root2 -> right );
return node ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func mergeTrees ( root1 * TreeNode , root2 * TreeNode ) * TreeNode {
if root1 == nil {
return root2
}
if root2 == nil {
return root1
}
node := & TreeNode { Val : root1 . Val + root2 . Val }
node . Left = mergeTrees ( root1 . Left , root2 . Left )
node . Right = mergeTrees ( root1 . Right , root2 . Right )
return node
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function mergeTrees ( root1 : TreeNode | null , root2 : TreeNode | null ) : TreeNode | null {
if ( root1 === null && root2 === null ) return null ;
if ( root1 === null ) return root2 ;
if ( root2 === null ) return root1 ;
const left = mergeTrees ( root1 . left , root2 . left );
const right = mergeTrees ( root1 . right , root2 . right );
return new TreeNode ( root1 . val + root2 . val , left , right );
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
pub fn merge_trees (
root1 : Option < Rc < RefCell < TreeNode >>> ,
root2 : Option < Rc < RefCell < TreeNode >>> ,
) -> Option < Rc < RefCell < TreeNode >>> {
match ( root1 . is_some (), root2 . is_some ()) {
( false , false ) => None ,
( true , false ) => root1 ,
( false , true ) => root2 ,
( true , true ) => {
{
let mut r1 = root1 . as_ref (). unwrap (). borrow_mut ();
let mut r2 = root2 . as_ref (). unwrap (). borrow_mut ();
r1 . val += r2 . val ;
r1 . left = Self :: merge_trees ( r1 . left . take (), r2 . left . take ());
r1 . right = Self :: merge_trees ( r1 . right . take (), r2 . right . take ());
}
root1
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root1
* @param {TreeNode} root2
* @return {TreeNode}
*/
var mergeTrees = function ( root1 , root2 ) {
if ( ! root1 ) {
return root2 ;
}
if ( ! root2 ) {
return root1 ;
}
const node = new TreeNode ( root1 . val + root2 . val );
node . left = mergeTrees ( root1 . left , root2 . left );
node . right = mergeTrees ( root1 . right , root2 . right );
return node ;
};