题目描述
给定两个单词 word1
和 word2
,返回使得 word1
和 word2
相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
示例 1:
输入: word1 = "sea", word2 = "eat"
输出: 2
解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"
示例 2:
输入:word1 = "leetcode", word2 = "etco"
输出:4
提示:
1 <= word1.length, word2.length <= 500
word1
和 word2
只包含小写英文字母
解法
方法一:动态规划
我们定义 $f[i][j]$ 表示使得字符串 $\textit{word1}$ 的前 $i$ 个字符和字符串 $\textit{word2}$ 的前 $j$ 个字符相同的最小删除步数。那么答案为 $f[m][n]$,其中 $m$ 和 $n$ 分别是字符串 $\textit{word1}$ 和 $\textit{word2}$ 的长度。
初始时,如果 $j = 0$,那么 $f[i][0] = i$;如果 $i = 0$,那么 $f[0][j] = j$。
当 $i, j > 0$ 时,如果 $\textit{word1}[i - 1] = \textit{word2}[j - 1]$,那么 $f[i][j] = f[i - 1][j - 1]$;否则 $f[i][j] = \min(f[i - 1][j], f[i][j - 1]) + 1$。
最终返回 $f[m][n]$ 即可。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是字符串 $\textit{word1}$ 和 $\textit{word2}$ 的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
f = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
f[i][0] = i
for j in range(1, n + 1):
f[0][j] = j
for i, a in enumerate(word1, 1):
for j, b in enumerate(word2, 1):
if a == b:
f[i][j] = f[i - 1][j - 1]
else:
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + 1
return f[m][n]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
int[][] f = new int[m + 1][n + 1];
for (int i = 0; i <= m; ++i) {
f[i][0] = i;
}
for (int j = 0; j <= n; ++j) {
f[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
char a = word1.charAt(i - 1);
char b = word2.charAt(j - 1);
if (a == b) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + 1;
}
}
}
return f[m][n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.length(), n = word2.length();
vector<vector<int>> f(m + 1, vector<int>(n + 1));
for (int i = 0; i <= m; ++i) {
f[i][0] = i;
}
for (int j = 0; j <= n; ++j) {
f[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
char a = word1[i - 1];
char b = word2[j - 1];
if (a == b) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + 1;
}
}
}
return f[m][n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | func minDistance(word1 string, word2 string) int {
m, n := len(word1), len(word2)
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
f[i][0] = i
}
for j := 1; j <= n; j++ {
f[0][j] = j
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
a, b := word1[i-1], word2[j-1]
if a == b {
f[i][j] = f[i-1][j-1]
} else {
f[i][j] = 1 + min(f[i-1][j], f[i][j-1])
}
}
}
return f[m][n]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | function minDistance(word1: string, word2: string): number {
const m = word1.length;
const n = word2.length;
const f: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
f[i][0] = i;
}
for (let j = 1; j <= n; ++j) {
f[0][j] = j;
}
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
if (word1[i - 1] === word2[j - 1]) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + 1;
}
}
}
return f[m][n];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | impl Solution {
pub fn min_distance(word1: String, word2: String) -> i32 {
let m = word1.len();
let n = word2.len();
let s: Vec<char> = word1.chars().collect();
let t: Vec<char> = word2.chars().collect();
let mut f = vec![vec![0; n + 1]; m + 1];
for i in 0..=m {
f[i][0] = i as i32;
}
for j in 0..=n {
f[0][j] = j as i32;
}
for i in 1..=m {
for j in 1..=n {
let a = s[i - 1];
let b = t[j - 1];
if a == b {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = std::cmp::min(f[i - 1][j], f[i][j - 1]) + 1;
}
}
}
f[m][n]
}
}
|