561. 数组拆分
题目描述
给定长度为 2n
的整数数组 nums
,你的任务是将这些数分成 n
对, 例如 (a1, b1), (a2, b2), ..., (an, bn)
,使得从 1
到 n
的 min(ai, bi)
总和最大。
返回该 最大总和 。
示例 1:
输入:nums = [1,4,3,2] 输出:4 解释:所有可能的分法(忽略元素顺序)为: 1. (1, 4), (2, 3) -> min(1, 4) + min(2, 3) = 1 + 2 = 3 2. (1, 3), (2, 4) -> min(1, 3) + min(2, 4) = 1 + 2 = 3 3. (1, 2), (3, 4) -> min(1, 2) + min(3, 4) = 1 + 3 = 4 所以最大总和为 4
示例 2:
输入:nums = [6,2,6,5,1,2] 输出:9 解释:最优的分法为 (2, 1), (2, 5), (6, 6). min(2, 1) + min(2, 5) + min(6, 6) = 1 + 2 + 6 = 9
提示:
1 <= n <= 104
nums.length == 2 * n
-104 <= nums[i] <= 104
解法
方法一:排序
对于一个数对 $(a, b)$,我们不妨设 $a \leq b$,那么 $\min(a, b) = a$。为了使得总和尽可能大,我们取的 $b$ 应该与 $a$ 尽可能接近,这样可以保留更大的数。
因此,我们可以对数组 $nums$ 进行排序,然后将相邻的两个数分为一组,取每组的第一个数相加即可。
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 为数组 $nums$ 的长度。
1 2 3 4 |
|
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 |
|
1 2 3 4 5 6 |
|
1 2 3 4 5 6 7 8 |
|