跳转至

54. 螺旋矩阵

题目描述

给你一个 mn 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。

 

示例 1:

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]

示例 2:

输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
输出:[1,2,3,4,8,12,11,10,9,5,6,7]

 

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 10
  • -100 <= matrix[i][j] <= 100

解法

方法一:模拟

我们可以模拟整个遍历的过程,用 $i$ 和 $j$ 分别表示当前访问到的元素的行和列,用 $k$ 表示当前的方向,用数组或哈希表 $\textit{vis}$ 记录每个元素是否被访问过。每次我们访问到一个元素后,将其标记为已访问,然后按照当前的方向前进一步,如果前进一步后发现越界或者已经访问过,则改变方向继续前进,直到遍历完整个矩阵。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是矩阵的行数和列数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution:
    def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
        m, n = len(matrix), len(matrix[0])
        dirs = (0, 1, 0, -1, 0)
        vis = [[False] * n for _ in range(m)]
        i = j = k = 0
        ans = []
        for _ in range(m * n):
            ans.append(matrix[i][j])
            vis[i][j] = True
            x, y = i + dirs[k], j + dirs[k + 1]
            if x < 0 or x >= m or y < 0 or y >= n or vis[x][y]:
                k = (k + 1) % 4
            i += dirs[k]
            j += dirs[k + 1]
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
    public List<Integer> spiralOrder(int[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        int[] dirs = {0, 1, 0, -1, 0};
        int i = 0, j = 0, k = 0;
        List<Integer> ans = new ArrayList<>();
        boolean[][] vis = new boolean[m][n];
        for (int h = m * n; h > 0; --h) {
            ans.add(matrix[i][j]);
            vis[i][j] = true;
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x < 0 || x >= m || y < 0 || y >= n || vis[x][y]) {
                k = (k + 1) % 4;
            }
            i += dirs[k];
            j += dirs[k + 1];
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        int dirs[5] = {0, 1, 0, -1, 0};
        int i = 0, j = 0, k = 0;
        vector<int> ans;
        bool vis[m][n];
        memset(vis, false, sizeof(vis));
        for (int h = m * n; h; --h) {
            ans.push_back(matrix[i][j]);
            vis[i][j] = true;
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x < 0 || x >= m || y < 0 || y >= n || vis[x][y]) {
                k = (k + 1) % 4;
            }
            i += dirs[k];
            j += dirs[k + 1];
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
func spiralOrder(matrix [][]int) (ans []int) {
    m, n := len(matrix), len(matrix[0])
    vis := make([][]bool, m)
    for i := range vis {
        vis[i] = make([]bool, n)
    }
    dirs := [5]int{0, 1, 0, -1, 0}
    i, j, k := 0, 0, 0
    for h := m * n; h > 0; h-- {
        ans = append(ans, matrix[i][j])
        vis[i][j] = true
        x, y := i+dirs[k], j+dirs[k+1]
        if x < 0 || x >= m || y < 0 || y >= n || vis[x][y] {
            k = (k + 1) % 4
        }
        i, j = i+dirs[k], j+dirs[k+1]
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
function spiralOrder(matrix: number[][]): number[] {
    const m = matrix.length;
    const n = matrix[0].length;
    const ans: number[] = [];
    const vis: boolean[][] = Array.from({ length: m }, () => Array(n).fill(false));
    const dirs = [0, 1, 0, -1, 0];
    for (let h = m * n, i = 0, j = 0, k = 0; h > 0; --h) {
        ans.push(matrix[i][j]);
        vis[i][j] = true;
        const x = i + dirs[k];
        const y = j + dirs[k + 1];
        if (x < 0 || x >= m || y < 0 || y >= n || vis[x][y]) {
            k = (k + 1) % 4;
        }
        i += dirs[k];
        j += dirs[k + 1];
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
impl Solution {
    pub fn spiral_order(matrix: Vec<Vec<i32>>) -> Vec<i32> {
        let m = matrix.len();
        let n = matrix[0].len();
        let mut dirs = vec![0, 1, 0, -1, 0];
        let mut vis = vec![vec![false; n]; m];
        let mut i = 0;
        let mut j = 0;
        let mut k = 0;
        let mut ans = Vec::new();

        for _ in 0..(m * n) {
            ans.push(matrix[i][j]);
            vis[i][j] = true;
            let x = i as i32 + dirs[k] as i32;
            let y = j as i32 + dirs[k + 1] as i32;

            if x < 0 || x >= m as i32 || y < 0 || y >= n as i32 || vis[x as usize][y as usize] {
                k = (k + 1) % 4;
            }

            i = (i as i32 + dirs[k] as i32) as usize;
            j = (j as i32 + dirs[k + 1] as i32) as usize;
        }

        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
 * @param {number[][]} matrix
 * @return {number[]}
 */
var spiralOrder = function (matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    const ans = [];
    const vis = Array.from({ length: m }, () => Array(n).fill(false));
    const dirs = [0, 1, 0, -1, 0];
    for (let h = m * n, i = 0, j = 0, k = 0; h > 0; --h) {
        ans.push(matrix[i][j]);
        vis[i][j] = true;
        const x = i + dirs[k];
        const y = j + dirs[k + 1];
        if (x < 0 || x >= m || y < 0 || y >= n || vis[x][y]) {
            k = (k + 1) % 4;
        }
        i += dirs[k];
        j += dirs[k + 1];
    }
    return ans;
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
public class Solution {
    public IList<int> SpiralOrder(int[][] matrix) {
        int m = matrix.Length, n = matrix[0].Length;
        int[] dirs = { 0, 1, 0, -1, 0 };
        int i = 0, j = 0, k = 0;
        IList<int> ans = new List<int>();
        bool[,] vis = new bool[m, n];
        for (int h = m * n; h > 0; --h) {
            ans.Add(matrix[i][j]);
            vis[i, j] = true;
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x < 0 || x >= m || y < 0 || y >= n || vis[x, y]) {
                k = (k + 1) % 4;
            }
            i += dirs[k];
            j += dirs[k + 1];
        }
        return ans;
    }
}

方法二:模拟(空间优化)

注意到,题目中矩阵元素取值范围为 $[-100, 100]$,因此,我们可以将访问过的元素加上一个较大的值,比如 $300$,这样只需要判断访问的元素是否大于 $100$ 即可,无需额外的空间记录是否访问过。如果最终需要将访问过的元素恢复原值,可以在遍历结束后再次遍历一遍矩阵,将所有元素减去 $300$。

时间复杂度 $O(m \times n)$,其中 $m$ 和 $n$ 分别是矩阵的行数和列数。空间复杂度 $O(1)$。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution:
    def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
        m, n = len(matrix), len(matrix[0])
        dirs = (0, 1, 0, -1, 0)
        i = j = k = 0
        ans = []
        for _ in range(m * n):
            ans.append(matrix[i][j])
            matrix[i][j] += 300
            x, y = i + dirs[k], j + dirs[k + 1]
            if x < 0 or x >= m or y < 0 or y >= n or matrix[x][y] > 100:
                k = (k + 1) % 4
            i += dirs[k]
            j += dirs[k + 1]
        for i in range(m):
            for j in range(n):
                matrix[i][j] -= 300
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
    public List<Integer> spiralOrder(int[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        int[] dirs = {0, 1, 0, -1, 0};
        int i = 0, j = 0, k = 0;
        List<Integer> ans = new ArrayList<>();
        for (int h = m * n; h > 0; --h) {
            ans.add(matrix[i][j]);
            matrix[i][j] += 300;
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] > 100) {
                k = (k + 1) % 4;
            }
            i += dirs[k];
            j += dirs[k + 1];
        }
        for (i = 0; i < m; ++i) {
            for (j = 0; j < n; ++j) {
                matrix[i][j] -= 300;
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        int dirs[5] = {0, 1, 0, -1, 0};
        int i = 0, j = 0, k = 0;
        vector<int> ans;
        for (int h = m * n; h; --h) {
            ans.push_back(matrix[i][j]);
            matrix[i][j] += 300;
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] > 100) {
                k = (k + 1) % 4;
            }
            i += dirs[k];
            j += dirs[k + 1];
        }
        for (i = 0; i < m; ++i) {
            for (j = 0; j < n; ++j) {
                matrix[i][j] -= 300;
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
func spiralOrder(matrix [][]int) (ans []int) {
    m, n := len(matrix), len(matrix[0])
    dirs := [5]int{0, 1, 0, -1, 0}
    i, j, k := 0, 0, 0
    for h := m * n; h > 0; h-- {
        ans = append(ans, matrix[i][j])
        matrix[i][j] += 300
        x, y := i+dirs[k], j+dirs[k+1]
        if x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] > 100 {
            k = (k + 1) % 4
        }
        i, j = i+dirs[k], j+dirs[k+1]
    }
    for i = 0; i < m; i++ {
        for j = 0; j < n; j++ {
            matrix[i][j] -= 300
        }
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
function spiralOrder(matrix: number[][]): number[] {
    const m = matrix.length;
    const n = matrix[0].length;
    const ans: number[] = [];
    const dirs = [0, 1, 0, -1, 0];
    for (let h = m * n, i = 0, j = 0, k = 0; h > 0; --h) {
        ans.push(matrix[i][j]);
        matrix[i][j] += 300;
        const x = i + dirs[k];
        const y = j + dirs[k + 1];
        if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] > 100) {
            k = (k + 1) % 4;
        }
        i += dirs[k];
        j += dirs[k + 1];
    }
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            matrix[i][j] -= 300;
        }
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
impl Solution {
    pub fn spiral_order(mut matrix: Vec<Vec<i32>>) -> Vec<i32> {
        let m = matrix.len();
        let n = matrix[0].len();
        let mut dirs = vec![0, 1, 0, -1, 0];
        let mut i = 0;
        let mut j = 0;
        let mut k = 0;
        let mut ans = Vec::new();

        for _ in 0..(m * n) {
            ans.push(matrix[i][j]);
            matrix[i][j] += 300;
            let x = i as i32 + dirs[k] as i32;
            let y = j as i32 + dirs[k + 1] as i32;

            if x < 0
                || x >= m as i32
                || y < 0
                || y >= n as i32
                || matrix[x as usize][y as usize] > 100
            {
                k = (k + 1) % 4;
            }

            i = (i as i32 + dirs[k] as i32) as usize;
            j = (j as i32 + dirs[k + 1] as i32) as usize;
        }

        for i in 0..m {
            for j in 0..n {
                matrix[i][j] -= 300;
            }
        }

        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
 * @param {number[][]} matrix
 * @return {number[]}
 */
var spiralOrder = function (matrix) {
    const m = matrix.length;
    const n = matrix[0].length;
    const ans = [];
    const dirs = [0, 1, 0, -1, 0];
    for (let h = m * n, i = 0, j = 0, k = 0; h > 0; --h) {
        ans.push(matrix[i][j]);
        matrix[i][j] += 300;
        const x = i + dirs[k];
        const y = j + dirs[k + 1];
        if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] > 100) {
            k = (k + 1) % 4;
        }
        i += dirs[k];
        j += dirs[k + 1];
    }
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            matrix[i][j] -= 300;
        }
    }
    return ans;
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class Solution {
    public IList<int> SpiralOrder(int[][] matrix) {
        int m = matrix.Length, n = matrix[0].Length;
        int[] dirs = { 0, 1, 0, -1, 0 };
        int i = 0, j = 0, k = 0;
        IList<int> ans = new List<int>();
        for (int h = m * n; h > 0; --h) {
            ans.Add(matrix[i][j]);
            matrix[i][j] += 300;
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] > 100) {
                k = (k + 1) % 4;
            }
            i += dirs[k];
            j += dirs[k + 1];
        }
        for (int a = 0; a < m; ++a) {
            for (int b = 0; b < n; ++b) {
                matrix[a][b] -= 300;
            }
        }
        return ans;
    }
}

评论