跳转至

538. 把二叉搜索树转换为累加树

题目描述

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

  • 节点的左子树仅包含键 小于 节点键的节点。
  • 节点的右子树仅包含键 大于 节点键的节点。
  • 左右子树也必须是二叉搜索树。

注意:本题和 1038: https://leetcode.cn/problems/binary-search-tree-to-greater-sum-tree/ 相同

 

示例 1:

输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

输入:root = [0,null,1]
输出:[1,null,1]

示例 3:

输入:root = [1,0,2]
输出:[3,3,2]

示例 4:

输入:root = [3,2,4,1]
输出:[7,9,4,10]

 

提示:

  • 树中的节点数介于 0 和 104 之间。
  • 每个节点的值介于 -104 和 104 之间。
  • 树中的所有值 互不相同
  • 给定的树为二叉搜索树。

解法

方法一:递归

按照“右根左”的顺序,递归遍历二叉搜索树,累加遍历到的所有节点值到 $s$ 中,然后每次赋值给对应的 node 节点。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉搜索树的节点数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def convertBST(self, root: TreeNode) -> TreeNode:
        def dfs(root):
            nonlocal s
            if root is None:
                return
            dfs(root.right)
            s += root.val
            root.val = s
            dfs(root.left)

        s = 0
        dfs(root)
        return root
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private int s;

    public TreeNode convertBST(TreeNode root) {
        dfs(root);
        return root;
    }

    private void dfs(TreeNode root) {
        if (root == null) {
            return;
        }
        dfs(root.right);
        s += root.val;
        root.val = s;
        dfs(root.left);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int s = 0;

    TreeNode* convertBST(TreeNode* root) {
        dfs(root);
        return root;
    }

    void dfs(TreeNode* root) {
        if (!root) return;
        dfs(root->right);
        s += root->val;
        root->val = s;
        dfs(root->left);
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func convertBST(root *TreeNode) *TreeNode {
    s := 0
    var dfs func(*TreeNode)
    dfs = func(root *TreeNode) {
        if root == nil {
            return
        }
        dfs(root.Right)
        s += root.Val
        root.Val = s
        dfs(root.Left)
    }
    dfs(root)
    return root
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {TreeNode}
 */
var convertBST = function (root) {
    let s = 0;
    function dfs(root) {
        if (!root) {
            return;
        }
        dfs(root.right);
        s += root.val;
        root.val = s;
        dfs(root.left);
    }
    dfs(root);
    return root;
};

方法二:Morris 遍历

Morris 遍历无需使用栈,时间复杂度 $O(n)$,空间复杂度为 $O(1)$。核心思想是:

定义 s 表示二叉搜索树节点值累加和。遍历二叉树节点:

  1. 若当前节点 root 的右子树为空,将当前节点值添加至 s 中,更新当前节点值为 s,并将当前节点更新为 root.left
  2. 若当前节点 root 的右子树不为空,找到右子树的最左节点 next(也即是 root 节点在中序遍历下的后继节点):
    • 若后继节点 next 的左子树为空,将后继节点的左子树指向当前节点 root,并将当前节点更新为 root.right
    • 若后继节点 next 的左子树不为空,将当前节点值添加 s 中,更新当前节点值为 s,然后将后继节点左子树指向空(即解除 next 与 root 的指向关系),并将当前节点更新为 root.left
  3. 循环以上步骤,直至二叉树节点为空,遍历结束。
  4. 最后返回二叉搜索树根节点即可。

Morris 反序中序遍历跟 Morris 中序遍历思路一致,只是将中序遍历的“左根右”变为“右根左”。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def convertBST(self, root: TreeNode) -> TreeNode:
        s = 0
        node = root
        while root:
            if root.right is None:
                s += root.val
                root.val = s
                root = root.left
            else:
                next = root.right
                while next.left and next.left != root:
                    next = next.left
                if next.left is None:
                    next.left = root
                    root = root.right
                else:
                    s += root.val
                    root.val = s
                    next.left = None
                    root = root.left
        return node
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode convertBST(TreeNode root) {
        int s = 0;
        TreeNode node = root;
        while (root != null) {
            if (root.right == null) {
                s += root.val;
                root.val = s;
                root = root.left;
            } else {
                TreeNode next = root.right;
                while (next.left != null && next.left != root) {
                    next = next.left;
                }
                if (next.left == null) {
                    next.left = root;
                    root = root.right;
                } else {
                    s += root.val;
                    root.val = s;
                    next.left = null;
                    root = root.left;
                }
            }
        }
        return node;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* convertBST(TreeNode* root) {
        int s = 0;
        TreeNode* node = root;
        while (root) {
            if (root->right == nullptr) {
                s += root->val;
                root->val = s;
                root = root->left;
            } else {
                TreeNode* next = root->right;
                while (next->left && next->left != root) {
                    next = next->left;
                }
                if (next->left == nullptr) {
                    next->left = root;
                    root = root->right;
                } else {
                    s += root->val;
                    root->val = s;
                    next->left = nullptr;
                    root = root->left;
                }
            }
        }
        return node;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func convertBST(root *TreeNode) *TreeNode {
    s := 0
    node := root
    for root != nil {
        if root.Right == nil {
            s += root.Val
            root.Val = s
            root = root.Left
        } else {
            next := root.Right
            for next.Left != nil && next.Left != root {
                next = next.Left
            }
            if next.Left == nil {
                next.Left = root
                root = root.Right
            } else {
                s += root.Val
                root.Val = s
                next.Left = nil
                root = root.Left
            }
        }
    }
    return node
}

评论