题目描述
给你一个表示交易的数组 transactions
,其中 transactions[i] = [fromi, toi, amounti]
表示 ID = fromi
的人给 ID = toi
的人共计 amounti $
。
请你计算并返回还清所有债务的最小交易笔数。
示例 1:
输入:transactions = [[0,1,10],[2,0,5]]
输出:2
解释:
#0 给 #1 $10 。
#2 给 #0 $5 。
需要进行两笔交易。一种结清债务的方式是 #1 给 #0 和 #2 各 $5 。
示例 2:
输入:transactions = [[0,1,10],[1,0,1],[1,2,5],[2,0,5]]
输出:1
解释:
#0 给 #1 $10 。
#1 给 #0 $1 。
#1 给 #2 $5 。
#2 给 #0 $5 。
因此,#1 只需要给 #0 $4 ,所有的债务即可还清。
提示:
1 <= transactions.length <= 8
transactions[i].length == 3
0 <= fromi, toi < 12
fromi != toi
1 <= amounti <= 100
解法
方法一:状态压缩动态规划 + 子集枚举
我们先遍历数组 transactions
,统计每个人的收支情况,然后将所有收支不为零的人的收支情况存入数组 $nums$ 中。如果我们可以找到一个子集,子集中共有 $k$ 个人,且这 $k$ 个人的收支情况之和为零,那么我们最多通过 $k-1$ 次交易,就能够使得这 $k$ 个人的收支情况全部清零。这样,我们就能将原问题转化成一个子集枚举的问题。
我们定义 $f[i]$ 表示将集合 $i$ 的所有元素的收支情况全部清零,所需的最少交易次数,初始时 $f[0]=0$,其余 $f[i]=+\infty$。
考虑 $f[i]$,其中 $i \in [1,2^m)$, $m$ 是数组 $nums$ 的长度。我们可以统计集合 $i$ 中所有元素的收支情况之和 $s$,如果 $s=0$,那么 $f[i]$ 的取值不超过 $|i|-1$,其中 $|i|$ 表示集合 $i$ 中的元素个数。然后我们可以枚举 $i$ 的所有非空子集 $j$,计算 $f[j]+f[i-j]$,其中 $f[j]$ 和 $f[i-j]$ 分别表示将集合 $j$ 和 $i-j$ 的所有元素的收支情况全部清零,所需的最少交易次数。我们可以得到状态转移方程:
$$
f[i]=
\begin{cases}
0, & i=0 \
+\infty, & i \neq 0, s \neq 0 \
\min(|i|-1, \min_{j \subset i, j \neq \emptyset} {f[j]+f[i-j]}), & i \neq 0, s = 0
\end{cases}
$$
其中 $j \subset i$ 表示 $j$ 是 $i$ 的子集,且 $j \neq \emptyset$。
最终答案即为 $f[2^m-1]$。
时间复杂度 $O(3^n)$,空间复杂度 $O(2^n)$。其中 $n$ 是人的数量,本题中 $n \leq 12$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution:
def minTransfers(self, transactions: List[List[int]]) -> int:
g = defaultdict(int)
for f, t, x in transactions:
g[f] -= x
g[t] += x
nums = [x for x in g.values() if x]
m = len(nums)
f = [inf] * (1 << m)
f[0] = 0
for i in range(1, 1 << m):
s = 0
for j, x in enumerate(nums):
if i >> j & 1:
s += x
if s == 0:
f[i] = i.bit_count() - 1
j = (i - 1) & i
while j > 0:
f[i] = min(f[i], f[j] + f[i ^ j])
j = (j - 1) & i
return f[-1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | class Solution {
public int minTransfers(int[][] transactions) {
int[] g = new int[12];
for (var t : transactions) {
g[t[0]] -= t[2];
g[t[1]] += t[2];
}
List<Integer> nums = new ArrayList<>();
for (int x : g) {
if (x != 0) {
nums.add(x);
}
}
int m = nums.size();
int[] f = new int[1 << m];
Arrays.fill(f, 1 << 29);
f[0] = 0;
for (int i = 1; i < 1 << m; ++i) {
int s = 0;
for (int j = 0; j < m; ++j) {
if ((i >> j & 1) == 1) {
s += nums.get(j);
}
}
if (s == 0) {
f[i] = Integer.bitCount(i) - 1;
for (int j = (i - 1) & i; j > 0; j = (j - 1) & i) {
f[i] = Math.min(f[i], f[j] + f[i ^ j]);
}
}
}
return f[(1 << m) - 1];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 | class Solution {
public:
int minTransfers(vector<vector<int>>& transactions) {
int g[12]{};
for (auto& t : transactions) {
g[t[0]] -= t[2];
g[t[1]] += t[2];
}
vector<int> nums;
for (int x : g) {
if (x) {
nums.push_back(x);
}
}
int m = nums.size();
int f[1 << m];
memset(f, 0x3f, sizeof(f));
f[0] = 0;
for (int i = 1; i < 1 << m; ++i) {
int s = 0;
for (int j = 0; j < m; ++j) {
if (i >> j & 1) {
s += nums[j];
}
}
if (s == 0) {
f[i] = __builtin_popcount(i) - 1;
for (int j = (i - 1) & i; j; j = (j - 1) & i) {
f[i] = min(f[i], f[j] + f[i ^ j]);
}
}
}
return f[(1 << m) - 1];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | func minTransfers(transactions [][]int) int {
g := [12]int{}
for _, t := range transactions {
g[t[0]] -= t[2]
g[t[1]] += t[2]
}
nums := []int{}
for _, x := range g {
if x != 0 {
nums = append(nums, x)
}
}
m := len(nums)
f := make([]int, 1<<m)
for i := 1; i < 1<<m; i++ {
f[i] = 1 << 29
s := 0
for j, x := range nums {
if i>>j&1 == 1 {
s += x
}
}
if s == 0 {
f[i] = bits.OnesCount(uint(i)) - 1
for j := (i - 1) & i; j > 0; j = (j - 1) & i {
f[i] = min(f[i], f[j]+f[i^j])
}
}
}
return f[1<<m-1]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 | function minTransfers(transactions: number[][]): number {
const g: number[] = new Array(12).fill(0);
for (const [f, t, x] of transactions) {
g[f] -= x;
g[t] += x;
}
const nums = g.filter(x => x !== 0);
const m = nums.length;
const f: number[] = new Array(1 << m).fill(1 << 29);
f[0] = 0;
for (let i = 1; i < 1 << m; ++i) {
let s = 0;
for (let j = 0; j < m; ++j) {
if (((i >> j) & 1) === 1) {
s += nums[j];
}
}
if (s === 0) {
f[i] = bitCount(i) - 1;
for (let j = (i - 1) & i; j; j = (j - 1) & i) {
f[i] = Math.min(f[i], f[j] + f[i ^ j]);
}
}
}
return f[(1 << m) - 1];
}
function bitCount(i: number): number {
i = i - ((i >>> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
i = (i + (i >>> 4)) & 0x0f0f0f0f;
i = i + (i >>> 8);
i = i + (i >>> 16);
return i & 0x3f;
}
|