树
深度优先搜索
广度优先搜索
二叉树
题目描述
给定二叉树的根节点 root
,返回所有左叶子之和。
示例 1:
输入: root = [3,9,20,null,null,15,7]
输出: 24
解释: 在这个二叉树中,有两个左叶子,分别是 9 和 15,所以返回 24
示例 2:
输入: root = [1]
输出: 0
提示:
节点数在 [1, 1000]
范围内
-1000 <= Node.val <= 1000
解法
方法一:递归
我们首先判断 root
是否为空,如果为空则返回 $0$。
否则,我们递归调用 sumOfLeftLeaves
函数计算 root
的右子树中所有左叶子之和,并将结果赋给答案变量 $ans$。然后我们判断 root
的左子节点是否存在,如果存在,我们判断其是否为叶子节点,如果是叶子节点,则将其值加到答案变量 $ans$ 中,否则我们递归调用 sumOfLeftLeaves
函数计算 root
的左子树中所有左叶子之和,并将结果加到答案变量 $ans$ 中。
最后返回答案即可。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def sumOfLeftLeaves ( self , root : Optional [ TreeNode ]) -> int :
if root is None :
return 0
ans = self . sumOfLeftLeaves ( root . right )
if root . left :
if root . left . left == root . left . right :
ans += root . left . val
else :
ans += self . sumOfLeftLeaves ( root . left )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int sumOfLeftLeaves ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int ans = sumOfLeftLeaves ( root . right );
if ( root . left != null ) {
if ( root . left . left == root . left . right ) {
ans += root . left . val ;
} else {
ans += sumOfLeftLeaves ( root . left );
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int sumOfLeftLeaves ( TreeNode * root ) {
if ( ! root ) {
return 0 ;
}
int ans = sumOfLeftLeaves ( root -> right );
if ( root -> left ) {
if ( ! root -> left -> left && ! root -> left -> right ) {
ans += root -> left -> val ;
} else {
ans += sumOfLeftLeaves ( root -> left );
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sumOfLeftLeaves ( root * TreeNode ) int {
if root == nil {
return 0
}
ans := sumOfLeftLeaves ( root . Right )
if root . Left != nil {
if root . Left . Left == root . Left . Right {
ans += root . Left . Val
} else {
ans += sumOfLeftLeaves ( root . Left )
}
}
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sumOfLeftLeaves ( root : TreeNode | null ) : number {
if ( ! root ) {
return 0 ;
}
let ans = sumOfLeftLeaves ( root . right );
if ( root . left ) {
if ( root . left . left === root . left . right ) {
ans += root . left . val ;
} else {
ans += sumOfLeftLeaves ( root . left );
}
}
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
fn dfs ( root : & Option < Rc < RefCell < TreeNode >>> , is_left : bool ) -> i32 {
if root . is_none () {
return 0 ;
}
let node = root . as_ref (). unwrap (). borrow ();
let left = & node . left ;
let right = & node . right ;
if left . is_none () && right . is_none () {
if is_left {
return node . val ;
}
return 0 ;
}
Self :: dfs ( left , true ) + Self :: dfs ( right , false )
}
pub fn sum_of_left_leaves ( root : Option < Rc < RefCell < TreeNode >>> ) -> i32 {
Self :: dfs ( & root , false )
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
int sumOfLeftLeaves ( struct TreeNode * root ) {
if ( ! root ) {
return 0 ;
}
int ans = sumOfLeftLeaves ( root -> right );
if ( root -> left ) {
if ( ! root -> left -> left && ! root -> left -> right ) {
ans += root -> left -> val ;
} else {
ans += sumOfLeftLeaves ( root -> left );
}
}
return ans ;
}
方法二:栈
我们也可以将方法一的递归改为迭代,使用栈来模拟递归的过程。
与方法一类似,我们首先判断 root
是否为空,如果为空则返回 $0$。
否则,我们初始化答案变量 $ans$ 为 $0$,然后初始化栈 $stk$,将 root
加入栈中。
当栈不为空时,我们弹出栈顶元素 root
,如果 root
的左子节点存在,我们判断其是否为叶子节点,如果是叶子节点,则将其值加到答案变量 $ans$ 中,否则我们将其左子节点加入栈中。然后我们判断 root
的右子节点是否存在,如果存在,我们将其加入栈中。
最后返回答案即可。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。
Python3 Java C++ Go TypeScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def sumOfLeftLeaves ( self , root : Optional [ TreeNode ]) -> int :
if root is None :
return 0
ans = 0
stk = [ root ]
while stk :
root = stk . pop ()
if root . left :
if root . left . left == root . left . right :
ans += root . left . val
else :
stk . append ( root . left )
if root . right :
stk . append ( root . right )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int sumOfLeftLeaves ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
Deque < TreeNode > stk = new ArrayDeque <> ();
stk . push ( root );
int ans = 0 ;
while ( ! stk . isEmpty ()) {
root = stk . pop ();
if ( root . left != null ) {
if ( root . left . left == root . left . right ) {
ans += root . left . val ;
} else {
stk . push ( root . left );
}
}
if ( root . right != null ) {
stk . push ( root . right );
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int sumOfLeftLeaves ( TreeNode * root ) {
if ( ! root ) {
return 0 ;
}
int ans = 0 ;
stack < TreeNode *> stk {{ root }};
while ( ! stk . empty ()) {
root = stk . top (), stk . pop ();
if ( root -> left ) {
if ( ! root -> left -> left && ! root -> left -> right ) {
ans += root -> left -> val ;
} else {
stk . push ( root -> left );
}
}
if ( root -> right ) {
stk . push ( root -> right );
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sumOfLeftLeaves ( root * TreeNode ) ( ans int ) {
if root == nil {
return 0
}
stk := [] * TreeNode { root }
for len ( stk ) > 0 {
root = stk [ len ( stk ) - 1 ]
stk = stk [: len ( stk ) - 1 ]
if root . Left != nil {
if root . Left . Left == root . Left . Right {
ans += root . Left . Val
} else {
stk = append ( stk , root . Left )
}
}
if root . Right != nil {
stk = append ( stk , root . Right )
}
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sumOfLeftLeaves ( root : TreeNode | null ) : number {
if ( ! root ) {
return 0 ;
}
let ans = 0 ;
const stk : TreeNode [] = [ root ];
while ( stk . length ) {
const { left , right } = stk . pop () ! ;
if ( left ) {
if ( left . left === left . right ) {
ans += left . val ;
} else {
stk . push ( left );
}
}
if ( right ) {
stk . push ( right );
}
}
return ans ;
}