跳转至

40. 组合总和 II

题目描述

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次 。

注意:解集不能包含重复的组合。 

 

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

示例 2:

输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
]

 

提示:

  • 1 <= candidates.length <= 100
  • 1 <= candidates[i] <= 50
  • 1 <= target <= 30

解法

方法一:排序 + 剪枝 + 回溯

我们可以先对数组进行排序,方便剪枝以及跳过重复的数字。

接下来,我们设计一个函数 $dfs(i, s)$,表示从下标 $i$ 开始搜索,且剩余目标值为 $s$,其中 $i$ 和 $s$ 都是非负整数,当前搜索路径为 $t$,答案为 $ans$。

在函数 $dfs(i, s)$ 中,我们先判断 $s$ 是否为 $0$,如果是,则将当前搜索路径 $t$ 加入答案 $ans$ 中,然后返回。如果 $i \geq n$,或者 $s \lt candidates[i]$,说明当前路径不合法,直接返回。否则,我们从下标 $i$ 开始搜索,搜索的下标范围是 $j \in [i, n)$,其中 $n$ 为数组 $candidates$ 的长度。在搜索的过程中,如果 $j \gt i$ 并且 $candidates[j] = candidates[j - 1]$,说明当前数字与上一个数字相同,我们可以跳过当前数字,因为上一个数字已经搜索过了。否则,我们将当前数字加入搜索路径 $t$ 中,然后递归调用函数 $dfs(j + 1, s - candidates[j])$,然后将当前数字从搜索路径 $t$ 中移除。

在主函数中,我们只要调用函数 $dfs(0, target)$,即可得到答案。

时间复杂度 $O(2^n \times n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $candidates$ 的长度。由于剪枝,实际的时间复杂度要远小于 $O(2^n \times n)$。

相似题目:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution:
    def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
        def dfs(i: int, s: int):
            if s == 0:
                ans.append(t[:])
                return
            if i >= len(candidates) or s < candidates[i]:
                return
            for j in range(i, len(candidates)):
                if j > i and candidates[j] == candidates[j - 1]:
                    continue
                t.append(candidates[j])
                dfs(j + 1, s - candidates[j])
                t.pop()

        candidates.sort()
        ans = []
        t = []
        dfs(0, target)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
    private List<List<Integer>> ans = new ArrayList<>();
    private List<Integer> t = new ArrayList<>();
    private int[] candidates;

    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        Arrays.sort(candidates);
        this.candidates = candidates;
        dfs(0, target);
        return ans;
    }

    private void dfs(int i, int s) {
        if (s == 0) {
            ans.add(new ArrayList<>(t));
            return;
        }
        if (i >= candidates.length || s < candidates[i]) {
            return;
        }
        for (int j = i; j < candidates.length; ++j) {
            if (j > i && candidates[j] == candidates[j - 1]) {
                continue;
            }
            t.add(candidates[j]);
            dfs(j + 1, s - candidates[j]);
            t.remove(t.size() - 1);
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        sort(candidates.begin(), candidates.end());
        vector<vector<int>> ans;
        vector<int> t;
        function<void(int, int)> dfs = [&](int i, int s) {
            if (s == 0) {
                ans.emplace_back(t);
                return;
            }
            if (i >= candidates.size() || s < candidates[i]) {
                return;
            }
            for (int j = i; j < candidates.size(); ++j) {
                if (j > i && candidates[j] == candidates[j - 1]) {
                    continue;
                }
                t.emplace_back(candidates[j]);
                dfs(j + 1, s - candidates[j]);
                t.pop_back();
            }
        };
        dfs(0, target);
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
func combinationSum2(candidates []int, target int) (ans [][]int) {
    sort.Ints(candidates)
    t := []int{}
    var dfs func(i, s int)
    dfs = func(i, s int) {
        if s == 0 {
            ans = append(ans, slices.Clone(t))
            return
        }
        if i >= len(candidates) || s < candidates[i] {
            return
        }
        for j := i; j < len(candidates); j++ {
            if j > i && candidates[j] == candidates[j-1] {
                continue
            }
            t = append(t, candidates[j])
            dfs(j+1, s-candidates[j])
            t = t[:len(t)-1]
        }
    }
    dfs(0, target)
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function combinationSum2(candidates: number[], target: number): number[][] {
    candidates.sort((a, b) => a - b);
    const ans: number[][] = [];
    const t: number[] = [];
    const dfs = (i: number, s: number) => {
        if (s === 0) {
            ans.push(t.slice());
            return;
        }
        if (i >= candidates.length || s < candidates[i]) {
            return;
        }
        for (let j = i; j < candidates.length; j++) {
            if (j > i && candidates[j] === candidates[j - 1]) {
                continue;
            }
            t.push(candidates[j]);
            dfs(j + 1, s - candidates[j]);
            t.pop();
        }
    };
    dfs(0, target);
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
impl Solution {
    fn dfs(i: usize, s: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, ans: &mut Vec<Vec<i32>>) {
        if s == 0 {
            ans.push(t.clone());
            return;
        }
        if i >= candidates.len() || s < candidates[i] {
            return;
        }
        for j in i..candidates.len() {
            if j > i && candidates[j] == candidates[j - 1] {
                continue;
            }
            t.push(candidates[j]);
            Self::dfs(j + 1, s - candidates[j], candidates, t, ans);
            t.pop();
        }
    }

    pub fn combination_sum2(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
        candidates.sort();
        let mut ans = Vec::new();
        Self::dfs(0, target, &candidates, &mut vec![], &mut ans);
        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/**
 * @param {number[]} candidates
 * @param {number} target
 * @return {number[][]}
 */
var combinationSum2 = function (candidates, target) {
    candidates.sort((a, b) => a - b);
    const ans = [];
    const t = [];
    const dfs = (i, s) => {
        if (s === 0) {
            ans.push(t.slice());
            return;
        }
        if (i >= candidates.length || s < candidates[i]) {
            return;
        }
        for (let j = i; j < candidates.length; ++j) {
            if (j > i && candidates[j] === candidates[j - 1]) {
                continue;
            }
            t.push(candidates[j]);
            dfs(j + 1, s - candidates[j]);
            t.pop();
        }
    };
    dfs(0, target);
    return ans;
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public class Solution {
    private List<IList<int>> ans = new List<IList<int>>();
    private List<int> t = new List<int>();
    private int[] candidates;

    public IList<IList<int>> CombinationSum2(int[] candidates, int target) {
        Array.Sort(candidates);
        this.candidates = candidates;
        dfs(0, target);
        return ans;
    }

    private void dfs(int i, int s) {
        if (s == 0) {
            ans.Add(new List<int>(t));
            return;
        }
        if (i >= candidates.Length || s < candidates[i]) {
            return;
        }
        for (int j = i; j < candidates.Length; ++j) {
            if (j > i && candidates[j] == candidates[j - 1]) {
                continue;
            }
            t.Add(candidates[j]);
            dfs(j + 1, s - candidates[j]);
            t.RemoveAt(t.Count - 1);
        }
    }
}

方法二:排序 + 剪枝 + 回溯(写法二)

我们也可以将函数 $dfs(i, s)$ 的实现逻辑改为另一种写法。如果我们选择当前数字,那么我们将当前数字加入搜索路径 $t$ 中,然后递归调用函数 $dfs(i + 1, s - candidates[i])$,然后将当前数字从搜索路径 $t$ 中移除。如果我们不选择当前数字,那么我们可以跳过与当前数字相同的所有数字,然后递归调用函数 $dfs(j, s)$,其中 $j$ 为第一个与当前数字不同的数字的下标。

时间复杂度 $O(2^n \times n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $candidates$ 的长度。由于剪枝,实际的时间复杂度要远小于 $O(2^n \times n)$。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution:
    def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
        def dfs(i: int, s: int):
            if s == 0:
                ans.append(t[:])
                return
            if i >= len(candidates) or s < candidates[i]:
                return
            x = candidates[i]
            t.append(x)
            dfs(i + 1, s - x)
            t.pop()
            while i < len(candidates) and candidates[i] == x:
                i += 1
            dfs(i, s)

        candidates.sort()
        ans = []
        t = []
        dfs(0, target)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
    private List<List<Integer>> ans = new ArrayList<>();
    private List<Integer> t = new ArrayList<>();
    private int[] candidates;

    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        Arrays.sort(candidates);
        this.candidates = candidates;
        dfs(0, target);
        return ans;
    }

    private void dfs(int i, int s) {
        if (s == 0) {
            ans.add(new ArrayList<>(t));
            return;
        }
        if (i >= candidates.length || s < candidates[i]) {
            return;
        }
        int x = candidates[i];
        t.add(x);
        dfs(i + 1, s - x);
        t.remove(t.size() - 1);
        while (i < candidates.length && candidates[i] == x) {
            ++i;
        }
        dfs(i, s);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        sort(candidates.begin(), candidates.end());
        vector<vector<int>> ans;
        vector<int> t;
        function<void(int, int)> dfs = [&](int i, int s) {
            if (s == 0) {
                ans.emplace_back(t);
                return;
            }
            if (i >= candidates.size() || s < candidates[i]) {
                return;
            }
            int x = candidates[i];
            t.emplace_back(x);
            dfs(i + 1, s - x);
            t.pop_back();
            while (i < candidates.size() && candidates[i] == x) {
                ++i;
            }
            dfs(i, s);
        };
        dfs(0, target);
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
func combinationSum2(candidates []int, target int) (ans [][]int) {
    sort.Ints(candidates)
    t := []int{}
    var dfs func(i, s int)
    dfs = func(i, s int) {
        if s == 0 {
            ans = append(ans, slices.Clone(t))
            return
        }
        if i >= len(candidates) || s < candidates[i] {
            return
        }
        for j := i; j < len(candidates); j++ {
            if j > i && candidates[j] == candidates[j-1] {
                continue
            }
            t = append(t, candidates[j])
            dfs(j+1, s-candidates[j])
            t = t[:len(t)-1]
        }
    }
    dfs(0, target)
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function combinationSum2(candidates: number[], target: number): number[][] {
    candidates.sort((a, b) => a - b);
    const ans: number[][] = [];
    const t: number[] = [];
    const dfs = (i: number, s: number) => {
        if (s === 0) {
            ans.push(t.slice());
            return;
        }
        if (i >= candidates.length || s < candidates[i]) {
            return;
        }
        const x = candidates[i];
        t.push(x);
        dfs(i + 1, s - x);
        t.pop();
        while (i < candidates.length && candidates[i] === x) {
            ++i;
        }
        dfs(i, s);
    };
    dfs(0, target);
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
impl Solution {
    fn dfs(mut i: usize, s: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, ans: &mut Vec<Vec<i32>>) {
        if s == 0 {
            ans.push(t.clone());
            return;
        }
        if i >= candidates.len() || s < candidates[i] {
            return;
        }
        let x = candidates[i];
        t.push(x);
        Self::dfs(i + 1, s - x, candidates, t, ans);
        t.pop();
        while i < candidates.len() && candidates[i] == x {
            i += 1;
        }
        Self::dfs(i, s, candidates, t, ans);
    }

    pub fn combination_sum2(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
        candidates.sort();
        let mut ans = Vec::new();
        Self::dfs(0, target, &candidates, &mut vec![], &mut ans);
        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/**
 * @param {number[]} candidates
 * @param {number} target
 * @return {number[][]}
 */
var combinationSum2 = function (candidates, target) {
    candidates.sort((a, b) => a - b);
    const ans = [];
    const t = [];
    const dfs = (i, s) => {
        if (s === 0) {
            ans.push(t.slice());
            return;
        }
        if (i >= candidates.length || s < candidates[i]) {
            return;
        }
        const x = candidates[i];
        t.push(x);
        dfs(i + 1, s - x);
        t.pop();
        while (i < candidates.length && candidates[i] === x) {
            ++i;
        }
        dfs(i, s);
    };
    dfs(0, target);
    return ans;
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public class Solution {
    private List<IList<int>> ans = new List<IList<int>>();
    private List<int> t = new List<int>();
    private int[] candidates;

    public IList<IList<int>> CombinationSum2(int[] candidates, int target) {
        Array.Sort(candidates);
        this.candidates = candidates;
        dfs(0, target);
        return ans;
    }

    private void dfs(int i, int s) {
        if (s == 0) {
            ans.Add(new List<int>(t));
            return;
        }
        if (i >= candidates.Length || s < candidates[i]) {
            return;
        }
        int x = candidates[i];
        t.Add(x);
        dfs(i + 1, s - x);
        t.RemoveAt(t.Count - 1);
        while (i < candidates.Length && candidates[i] == x) {
            ++i;
        }
        dfs(i, s);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class Solution {
    /**
     * @param integer[] $candidates
     * @param integer $target
     * @return integer[][]
     */

    function combinationSum2($candidates, $target) {
        $result = [];
        $currentCombination = [];
        $startIndex = 0;

        sort($candidates);
        $this->findCombinations($candidates, $target, $startIndex, $currentCombination, $result);
        return $result;
    }

    function findCombinations($candidates, $target, $startIndex, $currentCombination, &$result) {
        if ($target === 0) {
            $result[] = $currentCombination;
            return;
        }

        for ($i = $startIndex; $i < count($candidates); $i++) {
            $num = $candidates[$i];
            if ($num > $target) {
                break;
            }

            if ($i > $startIndex && $candidates[$i] === $candidates[$i - 1]) {
                continue;
            }
            $currentCombination[] = $num;

            $this->findCombinations(
                $candidates,
                $target - $num,
                $i + 1,
                $currentCombination,
                $result,
            );
            array_pop($currentCombination);
        }
    }
}

评论