题目描述
给你一个 无重复元素 的整数数组 candidates
和一个目标整数 target
,找出 candidates
中可以使数字和为目标数 target
的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates
中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target
的不同组合数少于 150
个。
示例 1:
输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。
示例 2:
输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2], target = 1
输出: []
提示:
1 <= candidates.length <= 30
2 <= candidates[i] <= 40
candidates
的所有元素 互不相同
1 <= target <= 40
解法
方法一:排序 + 剪枝 + 回溯
我们可以先对数组进行排序,方便剪枝。
接下来,我们设计一个函数 $dfs(i, s)$,表示从下标 $i$ 开始搜索,且剩余目标值为 $s$,其中 $i$ 和 $s$ 都是非负整数,当前搜索路径为 $t$,答案为 $ans$。
在函数 $dfs(i, s)$ 中,我们先判断 $s$ 是否为 $0$,如果是,则将当前搜索路径 $t$ 加入答案 $ans$ 中,然后返回。如果 $s \lt candidates[i]$,说明当前下标及后面的下标的元素都大于剩余目标值 $s$,路径不合法,直接返回。否则,我们从下标 $i$ 开始搜索,搜索的下标范围是 $j \in [i, n)$,其中 $n$ 为数组 $candidates$ 的长度。在搜索的过程中,我们将当前下标的元素加入搜索路径 $t$,递归调用函数 $dfs(j, s - candidates[j])$,递归结束后,将当前下标的元素从搜索路径 $t$ 中移除。
在主函数中,我们只要调用函数 $dfs(0, target)$,即可得到答案。
时间复杂度 $O(2^n \times n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $candidates$ 的长度。由于剪枝,实际的时间复杂度要远小于 $O(2^n \times n)$。
相似题目:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
def dfs(i: int, s: int):
if s == 0:
ans.append(t[:])
return
if s < candidates[i]:
return
for j in range(i, len(candidates)):
t.append(candidates[j])
dfs(j, s - candidates[j])
t.pop()
candidates.sort()
t = []
ans = []
dfs(0, target)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
private int[] candidates;
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.add(new ArrayList(t));
return;
}
if (s < candidates[i]) {
return;
}
for (int j = i; j < candidates.length; ++j) {
t.add(candidates[j]);
dfs(j, s - candidates[j]);
t.remove(t.size() - 1);
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> ans;
vector<int> t;
function<void(int, int)> dfs = [&](int i, int s) {
if (s == 0) {
ans.emplace_back(t);
return;
}
if (s < candidates[i]) {
return;
}
for (int j = i; j < candidates.size(); ++j) {
t.push_back(candidates[j]);
dfs(j, s - candidates[j]);
t.pop_back();
}
};
dfs(0, target);
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | func combinationSum(candidates []int, target int) (ans [][]int) {
sort.Ints(candidates)
t := []int{}
var dfs func(i, s int)
dfs = func(i, s int) {
if s == 0 {
ans = append(ans, slices.Clone(t))
return
}
if s < candidates[i] {
return
}
for j := i; j < len(candidates); j++ {
t = append(t, candidates[j])
dfs(j, s-candidates[j])
t = t[:len(t)-1]
}
}
dfs(0, target)
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | function combinationSum(candidates: number[], target: number): number[][] {
candidates.sort((a, b) => a - b);
const ans: number[][] = [];
const t: number[] = [];
const dfs = (i: number, s: number) => {
if (s === 0) {
ans.push(t.slice());
return;
}
if (s < candidates[i]) {
return;
}
for (let j = i; j < candidates.length; ++j) {
t.push(candidates[j]);
dfs(j, s - candidates[j]);
t.pop();
}
};
dfs(0, target);
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | impl Solution {
fn dfs(i: usize, s: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, ans: &mut Vec<Vec<i32>>) {
if s == 0 {
ans.push(t.clone());
return;
}
if s < candidates[i] {
return;
}
for j in i..candidates.len() {
t.push(candidates[j]);
Self::dfs(j, s - candidates[j], candidates, t, ans);
t.pop();
}
}
pub fn combination_sum(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
candidates.sort();
let mut ans = Vec::new();
Self::dfs(0, target, &candidates, &mut vec![], &mut ans);
ans
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | public class Solution {
private List<IList<int>> ans = new List<IList<int>>();
private List<int> t = new List<int>();
private int[] candidates;
public IList<IList<int>> CombinationSum(int[] candidates, int target) {
Array.Sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.Add(new List<int>(t));
return;
}
if (s < candidates[i]) {
return;
}
for (int j = i; j < candidates.Length; ++j) {
t.Add(candidates[j]);
dfs(j, s - candidates[j]);
t.RemoveAt(t.Count - 1);
}
}
}
|
方法二:排序 + 剪枝 + 回溯(写法二)
我们也可以将函数 $dfs(i, s)$ 的实现逻辑改为另一种写法。在函数 $dfs(i, s)$ 中,我们先判断 $s$ 是否为 $0$,如果是,则将当前搜索路径 $t$ 加入答案 $ans$ 中,然后返回。如果 $i \geq n$ 或者 $s \lt candidates[i]$,路径不合法,直接返回。否则,我们考虑两种情况,一种是不选当前下标的元素,即递归调用函数 $dfs(i + 1, s)$,另一种是选当前下标的元素,即递归调用函数 $dfs(i, s - candidates[i])$。
时间复杂度 $O(2^n \times n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $candidates$ 的长度。由于剪枝,实际的时间复杂度要远小于 $O(2^n \times n)$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
def dfs(i: int, s: int):
if s == 0:
ans.append(t[:])
return
if i >= len(candidates) or s < candidates[i]:
return
dfs(i + 1, s)
t.append(candidates[i])
dfs(i, s - candidates[i])
t.pop()
candidates.sort()
t = []
ans = []
dfs(0, target)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
private int[] candidates;
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.add(new ArrayList(t));
return;
}
if (i >= candidates.length || s < candidates[i]) {
return;
}
dfs(i + 1, s);
t.add(candidates[i]);
dfs(i, s - candidates[i]);
t.remove(t.size() - 1);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int>> ans;
vector<int> t;
function<void(int, int)> dfs = [&](int i, int s) {
if (s == 0) {
ans.emplace_back(t);
return;
}
if (i >= candidates.size() || s < candidates[i]) {
return;
}
dfs(i + 1, s);
t.push_back(candidates[i]);
dfs(i, s - candidates[i]);
t.pop_back();
};
dfs(0, target);
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | func combinationSum(candidates []int, target int) (ans [][]int) {
sort.Ints(candidates)
t := []int{}
var dfs func(i, s int)
dfs = func(i, s int) {
if s == 0 {
ans = append(ans, slices.Clone(t))
return
}
if i >= len(candidates) || s < candidates[i] {
return
}
dfs(i+1, s)
t = append(t, candidates[i])
dfs(i, s-candidates[i])
t = t[:len(t)-1]
}
dfs(0, target)
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | function combinationSum(candidates: number[], target: number): number[][] {
candidates.sort((a, b) => a - b);
const ans: number[][] = [];
const t: number[] = [];
const dfs = (i: number, s: number) => {
if (s === 0) {
ans.push(t.slice());
return;
}
if (i >= candidates.length || s < candidates[i]) {
return;
}
dfs(i + 1, s);
t.push(candidates[i]);
dfs(i, s - candidates[i]);
t.pop();
};
dfs(0, target);
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | impl Solution {
fn dfs(i: usize, s: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, ans: &mut Vec<Vec<i32>>) {
if s == 0 {
ans.push(t.clone());
return;
}
if i >= candidates.len() || s < candidates[i] {
return;
}
Self::dfs(i + 1, s, candidates, t, ans);
t.push(candidates[i]);
Self::dfs(i, s - candidates[i], candidates, t, ans);
t.pop();
}
pub fn combination_sum(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
candidates.sort();
let mut ans = Vec::new();
Self::dfs(0, target, &candidates, &mut vec![], &mut ans);
ans
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | public class Solution {
private List<IList<int>> ans = new List<IList<int>>();
private List<int> t = new List<int>();
private int[] candidates;
public IList<IList<int>> CombinationSum(int[] candidates, int target) {
Array.Sort(candidates);
this.candidates = candidates;
dfs(0, target);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
ans.Add(new List<int>(t));
return;
}
if (i >= candidates.Length || s < candidates[i]) {
return;
}
dfs(i + 1, s);
t.Add(candidates[i]);
dfs(i, s - candidates[i]);
t.RemoveAt(t.Count - 1);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 | class Solution {
/**
* @param integer[] $candidates
* @param integer $target
* @return integer[][]
*/
function combinationSum($candidates, $target) {
$result = [];
$currentCombination = [];
$startIndex = 0;
sort($candidates);
$this->findCombinations($candidates, $target, $startIndex, $currentCombination, $result);
return $result;
}
function findCombinations($candidates, $target, $startIndex, $currentCombination, &$result) {
if ($target === 0) {
$result[] = $currentCombination;
return;
}
for ($i = $startIndex; $i < count($candidates); $i++) {
$num = $candidates[$i];
if ($num > $target) {
break;
}
$currentCombination[] = $num;
$this->findCombinations($candidates, $target - $num, $i, $currentCombination, $result);
array_pop($currentCombination);
}
}
}
|