375. 猜数字大小 II
题目描述
我们正在玩一个猜数游戏,游戏规则如下:
- 我从
1
到n
之间选择一个数字。 - 你来猜我选了哪个数字。
- 如果你猜到正确的数字,就会 赢得游戏 。
- 如果你猜错了,那么我会告诉你,我选的数字比你的 更大或者更小 ,并且你需要继续猜数。
- 每当你猜了数字
x
并且猜错了的时候,你需要支付金额为x
的现金。如果你花光了钱,就会 输掉游戏 。
给你一个特定的数字 n
,返回能够 确保你获胜 的最小现金数,不管我选择那个数字 。
示例 1:
输入:n = 10 输出:16 解释:制胜策略如下: - 数字范围是 [1,10] 。你先猜测数字为 7 。 - 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $7 。 - 如果我的数字更大,则下一步需要猜测的数字范围是 [8,10] 。你可以猜测数字为 9 。 - 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $9 。 - 如果我的数字更大,那么这个数字一定是 10 。你猜测数字为 10 并赢得游戏,总费用为 $7 + $9 = $16 。 - 如果我的数字更小,那么这个数字一定是 8 。你猜测数字为 8 并赢得游戏,总费用为 $7 + $9 = $16 。 - 如果我的数字更小,则下一步需要猜测的数字范围是 [1,6] 。你可以猜测数字为 3 。 - 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $3 。 - 如果我的数字更大,则下一步需要猜测的数字范围是 [4,6] 。你可以猜测数字为 5 。 - 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $5 。 - 如果我的数字更大,那么这个数字一定是 6 。你猜测数字为 6 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。 - 如果我的数字更小,那么这个数字一定是 4 。你猜测数字为 4 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。 - 如果我的数字更小,则下一步需要猜测的数字范围是 [1,2] 。你可以猜测数字为 1 。 - 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $1 。 - 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $7 + $3 + $1 = $11 。 在最糟糕的情况下,你需要支付 $16 。因此,你只需要 $16 就可以确保自己赢得游戏。
示例 2:
输入:n = 1 输出:0 解释:只有一个可能的数字,所以你可以直接猜 1 并赢得游戏,无需支付任何费用。
示例 3:
输入:n = 2 输出:1 解释:有两个可能的数字 1 和 2 。 - 你可以先猜 1 。 - 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $1 。 - 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $1 。 最糟糕的情况下,你需要支付 $1 。
提示:
1 <= n <= 200
解法
方法一:动态规划
我们定义 $f[i][j]$ 表示在区间 $[i, j]$ 中猜中任意一个数最少需要花费的钱数。初始时 $f[i][i] = 0$,因为猜中了唯一的数不需要花费,对于 $i \gt j$ 的情况,也有 $f[i][j] = 0$。答案即为 $f[1][n]$。
对于 $f[i][j]$,我们可以枚举 $[i, j]$ 中的任意一个数 $k$,将区间 $[i, j]$ 分为 $[i, k - 1]$ 和 $[k + 1, j]$ 两部分,选择其中的较大值加上 $k$ 的花费,即 $\max(f[i][k - 1], f[k + 1][j]) + k$ 的最小值。
时间复杂度 $O(n^3)$,空间复杂度 $O(n^2)$。其中 $n$ 为猜测的数字范围。
1 2 3 4 5 6 7 8 9 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1 2 3 4 5 6 7 8 9 10 11 12 |
|