题目描述
我们都知道安卓有个手势解锁的界面,是一个 3 x 3
的点所绘制出来的网格。用户可以设置一个 “解锁模式” ,通过连接特定序列中的点,形成一系列彼此连接的线段,每个线段的端点都是序列中两个连续的点。如果满足以下两个条件,则 k
点序列是有效的解锁模式:
- 解锁模式中的所有点 互不相同 。
- 假如模式中两个连续点的线段需要经过其他点的 中心 ,那么要经过的点 必须提前出现 在序列中(已经经过),不能跨过任何还未被经过的点。
- 例如,点
5
或 6
没有提前出现的情况下连接点 2
和 9
是有效的,因为从点 2
到点 9
的线没有穿过点 5
或 6
的中心。
- 然而,点
2
没有提前出现的情况下连接点 1
和 3
是无效的,因为从圆点 1
到圆点 3
的直线穿过圆点 2
的中心。
以下是一些有效和无效解锁模式的示例:
- 无效手势:
[4,1,3,6]
,连接点 1 和点 3 时经过了未被连接过的 2 号点。
- 无效手势:
[4,1,9,2]
,连接点 1 和点 9 时经过了未被连接过的 5 号点。
- 有效手势:
[2,4,1,3,6]
,连接点 1 和点 3 是有效的,因为虽然它经过了点 2 ,但是点 2 在该手势中之前已经被连过了。
- 有效手势:
[6,5,4,1,9,2]
,连接点 1 和点 9 是有效的,因为虽然它经过了按键 5 ,但是点 5 在该手势中之前已经被连过了。
给你两个整数,分别为 m
和 n
,那么请返回有多少种 不同且有效的解锁模式 ,是 至少 需要经过 m
个点,但是 不超过 n
个点的。
两个解锁模式 不同 需满足:经过的点不同或者经过点的顺序不同。
示例 1:
输入:m = 1, n = 1
输出:9
示例 2:
输入:m = 1, n = 2
输出:65
提示:
解法
方法一:DFS
我们定义一个二维数组 $cross$,其中 $cross[i][j]$ 表示数字 $i$ 和数字 $j$ 之间是否有中间数字,如果有则 $cross[i][j]$ 的值为中间数字,否则为 $0$。
我们还需要一个一维数组 $vis$,用来记录数字是否被使用过。
由于数字 $1$, $3$, $7$, $9$ 是对称的,因此我们只需要计算数字 $1$ 的情况,然后乘以 $4$ 即可。
由于数字 $2$, $4$, $6$, $8$ 也是对称的,因此我们只需要计算数字 $2$ 的情况,然后乘以 $4$ 即可。
最后我们再计算数字 $5$ 的情况。
我们设计一个函数 $dfs(i, cnt)$,表示当前位于数字 $i$,且已经选了 $cnt$ 个数字的情况下,有多少种解锁模式。
函数 $dfs(i, cnt)$ 的执行过程如下:
如果 $cnt \gt n$,说明当前选中的数字个数超过了 $n$,直接返回 $0$。
否则,我们将数字 $i$ 标记为已使用,然后初始化答案 $ans$ 为 $0$。如果 $cnt \ge m$,说明当前选中的数字个数不少于 $m$,那么答案 $ans$ 就需要加 $1$。
接下来,我们枚举下一个数字 $j$,如果数字 $j$ 没有被使用过,且数字 $i$ 和数字 $j$ 之间没有中间数字,或者数字 $i$ 和数字 $j$ 之间的中间数字已经被使用过,那么我们就可以从数字 $j$ 出发,继续搜索,此时答案 $ans$ 需要加上 $dfs(j, cnt + 1)$ 的返回值。
最后,我们将数字 $i$ 标记为未使用,然后返回答案 $ans$。
最终的答案即为 $dfs(1, 1) \times 4 + dfs(2, 1) \times 4 + dfs(5, 1)$。
时间复杂度 $O(n!)$,空间复杂度 $O(n)$。其中 $n$ 是手势的最大长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | class Solution:
def numberOfPatterns(self, m: int, n: int) -> int:
def dfs(i: int, cnt: int = 1) -> int:
if cnt > n:
return 0
vis[i] = True
ans = int(cnt >= m)
for j in range(1, 10):
x = cross[i][j]
if not vis[j] and (x == 0 or vis[x]):
ans += dfs(j, cnt + 1)
vis[i] = False
return ans
cross = [[0] * 10 for _ in range(10)]
cross[1][3] = cross[3][1] = 2
cross[1][7] = cross[7][1] = 4
cross[1][9] = cross[9][1] = 5
cross[2][8] = cross[8][2] = 5
cross[3][7] = cross[7][3] = 5
cross[3][9] = cross[9][3] = 6
cross[4][6] = cross[6][4] = 5
cross[7][9] = cross[9][7] = 8
vis = [False] * 10
return dfs(1) * 4 + dfs(2) * 4 + dfs(5)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | class Solution {
private int m;
private int n;
private int[][] cross = new int[10][10];
private boolean[] vis = new boolean[10];
public int numberOfPatterns(int m, int n) {
this.m = m;
this.n = n;
cross[1][3] = cross[3][1] = 2;
cross[1][7] = cross[7][1] = 4;
cross[1][9] = cross[9][1] = 5;
cross[2][8] = cross[8][2] = 5;
cross[3][7] = cross[7][3] = 5;
cross[3][9] = cross[9][3] = 6;
cross[4][6] = cross[6][4] = 5;
cross[7][9] = cross[9][7] = 8;
return dfs(1, 1) * 4 + dfs(2, 1) * 4 + dfs(5, 1);
}
private int dfs(int i, int cnt) {
if (cnt > n) {
return 0;
}
vis[i] = true;
int ans = cnt >= m ? 1 : 0;
for (int j = 1; j < 10; ++j) {
int x = cross[i][j];
if (!vis[j] && (x == 0 || vis[x])) {
ans += dfs(j, cnt + 1);
}
}
vis[i] = false;
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 | class Solution {
public:
int numberOfPatterns(int m, int n) {
int cross[10][10];
memset(cross, 0, sizeof(cross));
bool vis[10];
memset(vis, false, sizeof(vis));
cross[1][3] = cross[3][1] = 2;
cross[1][7] = cross[7][1] = 4;
cross[1][9] = cross[9][1] = 5;
cross[2][8] = cross[8][2] = 5;
cross[3][7] = cross[7][3] = 5;
cross[3][9] = cross[9][3] = 6;
cross[4][6] = cross[6][4] = 5;
cross[7][9] = cross[9][7] = 8;
function<int(int, int)> dfs = [&](int i, int cnt) {
if (cnt > n) {
return 0;
}
vis[i] = true;
int ans = cnt >= m ? 1 : 0;
for (int j = 1; j < 10; ++j) {
int x = cross[i][j];
if (!vis[j] && (x == 0 || vis[x])) {
ans += dfs(j, cnt + 1);
}
}
vis[i] = false;
return ans;
};
return dfs(1, 1) * 4 + dfs(2, 1) * 4 + dfs(5, 1);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | func numberOfPatterns(m int, n int) int {
cross := [10][10]int{}
vis := [10]bool{}
cross[1][3] = 2
cross[1][7] = 4
cross[1][9] = 5
cross[2][8] = 5
cross[3][7] = 5
cross[3][9] = 6
cross[4][6] = 5
cross[7][9] = 8
cross[3][1] = 2
cross[7][1] = 4
cross[9][1] = 5
cross[8][2] = 5
cross[7][3] = 5
cross[9][3] = 6
cross[6][4] = 5
cross[9][7] = 8
var dfs func(int, int) int
dfs = func(i, cnt int) int {
if cnt > n {
return 0
}
vis[i] = true
ans := 0
if cnt >= m {
ans++
}
for j := 1; j < 10; j++ {
x := cross[i][j]
if !vis[j] && (x == 0 || vis[x]) {
ans += dfs(j, cnt+1)
}
}
vis[i] = false
return ans
}
return dfs(1, 1)*4 + dfs(2, 1)*4 + dfs(5, 1)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | function numberOfPatterns(m: number, n: number): number {
const cross: number[][] = Array(10)
.fill(0)
.map(() => Array(10).fill(0));
const vis: boolean[] = Array(10).fill(false);
cross[1][3] = cross[3][1] = 2;
cross[1][7] = cross[7][1] = 4;
cross[1][9] = cross[9][1] = 5;
cross[2][8] = cross[8][2] = 5;
cross[3][7] = cross[7][3] = 5;
cross[3][9] = cross[9][3] = 6;
cross[4][6] = cross[6][4] = 5;
cross[7][9] = cross[9][7] = 8;
const dfs = (i: number, cnt: number): number => {
if (cnt > n) {
return 0;
}
vis[i] = true;
let ans = 0;
if (cnt >= m) {
++ans;
}
for (let j = 1; j < 10; ++j) {
const x = cross[i][j];
if (!vis[j] && (x === 0 || vis[x])) {
ans += dfs(j, cnt + 1);
}
}
vis[i] = false;
return ans;
};
return dfs(1, 1) * 4 + dfs(2, 1) * 4 + dfs(5, 1);
}
|