跳转至

3385. 破解锁的最少时间 II 🔒

题目描述

Bob 被困在了一个地窖里,他需要破解 n 个锁才能逃出地窖,每一个锁都需要一定的 能量 才能打开。每一个锁需要的能量存放在一个数组 strength 里,其中 strength[i] 表示打开第 i 个锁需要的能量。

Bob 有一把剑,它具备以下的特征:

  • 一开始剑的能量为 0 。
  • 剑的能量增加因子 X 一开始的值为 1 。
  • 每分钟,剑的能量都会增加当前的 X 值。
  • 打开第 i 把锁,剑的能量需要到达 至少 strength[i] 。
  • 打开一把锁以后,剑的能量会变回 0 ,X 的值会增加 1。

你的任务是打开所有 n 把锁并逃出地窖,请你求出需要的 最少 分钟数。

请你返回 Bob 打开所有 n 把锁需要的 最少 时间。

 

示例 1:

输入:strength = [3,4,1]

输出:4

解释:

时间 能量 X 操作 更新后的 X
0 0 1 什么也不做 1
1 1 1 打开第 3 把锁 2
2 2 2 什么也不做 2
3 4 2 打开第 2 把锁 3
4 3 3 打开第 1 把锁 3

无法用少于 4 分钟打开所有的锁,所以答案为 4 。

示例 2:

输入:strength = [2,5,4]

输出:6

解释:

时间 能量 X 操作 更新后的 X
0 0 1 什么也不做 1
1 1 1 什么也不做 1
2 2 1 打开第 1 把锁 2
3 2 2 什么也不做 2
4 4 2 打开第 3 把锁 3
5 3 3 什么也不做 3
6 6 3 打开第 2 把锁 4

无法用少于 6 分钟打开所有的锁,所以答案为 6。

 

提示:

  • n == strength.length
  • 1 <= n <= 80
  • 1 <= strength[i] <= 106
  • n == strength.length

解法

方法一

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
class MCFGraph:
    class Edge(NamedTuple):
        src: int
        dst: int
        cap: int
        flow: int
        cost: int

    class _Edge:
        def __init__(self, dst: int, cap: int, cost: int) -> None:
            self.dst = dst
            self.cap = cap
            self.cost = cost
            self.rev: Optional[MCFGraph._Edge] = None

    def __init__(self, n: int) -> None:
        self._n = n
        self._g: List[List[MCFGraph._Edge]] = [[] for _ in range(n)]
        self._edges: List[MCFGraph._Edge] = []

    def add_edge(self, src: int, dst: int, cap: int, cost: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MCFGraph._Edge(dst, cap, cost)
        re = MCFGraph._Edge(src, 0, -cost)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    def get_edge(self, i: int) -> Edge:
        assert 0 <= i < len(self._edges)
        e = self._edges[i]
        re = cast(MCFGraph._Edge, e.rev)
        return MCFGraph.Edge(re.dst, e.dst, e.cap + re.cap, re.cap, e.cost)

    def edges(self) -> List[Edge]:
        return [self.get_edge(i) for i in range(len(self._edges))]

    def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> Tuple[int, int]:
        return self.slope(s, t, flow_limit)[-1]

    def slope(
        self, s: int, t: int, flow_limit: Optional[int] = None
    ) -> List[Tuple[int, int]]:
        assert 0 <= s < self._n
        assert 0 <= t < self._n
        assert s != t
        if flow_limit is None:
            flow_limit = cast(int, sum(e.cap for e in self._g[s]))

        dual = [0] * self._n
        prev: List[Optional[Tuple[int, MCFGraph._Edge]]] = [None] * self._n

        def refine_dual() -> bool:
            pq = [(0, s)]
            visited = [False] * self._n
            dist: List[Optional[int]] = [None] * self._n
            dist[s] = 0
            while pq:
                dist_v, v = heappop(pq)
                if visited[v]:
                    continue
                visited[v] = True
                if v == t:
                    break
                dual_v = dual[v]
                for e in self._g[v]:
                    w = e.dst
                    if visited[w] or e.cap == 0:
                        continue
                    reduced_cost = e.cost - dual[w] + dual_v
                    new_dist = dist_v + reduced_cost
                    dist_w = dist[w]
                    if dist_w is None or new_dist < dist_w:
                        dist[w] = new_dist
                        prev[w] = v, e
                        heappush(pq, (new_dist, w))
            else:
                return False
            dist_t = dist[t]
            for v in range(self._n):
                if visited[v]:
                    dual[v] -= cast(int, dist_t) - cast(int, dist[v])
            return True

        flow = 0
        cost = 0
        prev_cost_per_flow: Optional[int] = None
        result = [(flow, cost)]
        while flow < flow_limit:
            if not refine_dual():
                break
            f = flow_limit - flow
            v = t
            while prev[v] is not None:
                u, e = cast(Tuple[int, MCFGraph._Edge], prev[v])
                f = min(f, e.cap)
                v = u
            v = t
            while prev[v] is not None:
                u, e = cast(Tuple[int, MCFGraph._Edge], prev[v])
                e.cap -= f
                assert e.rev is not None
                e.rev.cap += f
                v = u
            c = -dual[s]
            flow += f
            cost += f * c
            if c == prev_cost_per_flow:
                result.pop()
            result.append((flow, cost))
            prev_cost_per_flow = c
        return result


class Solution:
    def findMinimumTime(self, a: List[int]) -> int:
        n = len(a)
        s = n * 2
        t = s + 1
        g = MCFGraph(t + 1)

        for i in range(n):
            g.add_edge(s, i, 1, 0)
            g.add_edge(i + n, t, 1, 0)
            for j in range(n):
                g.add_edge(i, j + n, 1, (a[i] - 1) // (j + 1) + 1)

        return g.flow(s, t, n)[1]
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
class MCFGraph {
    static class Edge {
        int src, dst, cap, flow, cost;

        Edge(int src, int dst, int cap, int flow, int cost) {
            this.src = src;
            this.dst = dst;
            this.cap = cap;
            this.flow = flow;
            this.cost = cost;
        }
    }

    static class _Edge {
        int dst, cap, cost;
        _Edge rev;

        _Edge(int dst, int cap, int cost) {
            this.dst = dst;
            this.cap = cap;
            this.cost = cost;
            this.rev = null;
        }
    }

    private int n;
    private List<List<_Edge>> graph;
    private List<_Edge> edges;

    public MCFGraph(int n) {
        this.n = n;
        this.graph = new ArrayList<>();
        this.edges = new ArrayList<>();
        for (int i = 0; i < n; i++) {
            graph.add(new ArrayList<>());
        }
    }

    public int addEdge(int src, int dst, int cap, int cost) {
        assert (0 <= src && src < n);
        assert (0 <= dst && dst < n);
        assert (0 <= cap);

        int m = edges.size();
        _Edge e = new _Edge(dst, cap, cost);
        _Edge re = new _Edge(src, 0, -cost);
        e.rev = re;
        re.rev = e;

        graph.get(src).add(e);
        graph.get(dst).add(re);
        edges.add(e);
        return m;
    }

    public Edge getEdge(int i) {
        assert (0 <= i && i < edges.size());
        _Edge e = edges.get(i);
        _Edge re = e.rev;
        return new Edge(re.dst, e.dst, e.cap + re.cap, re.cap, e.cost);
    }

    public List<Edge> edges() {
        List<Edge> result = new ArrayList<>();
        for (int i = 0; i < edges.size(); i++) {
            result.add(getEdge(i));
        }
        return result;
    }

    public int[] flow(int s, int t, Integer flowLimit) {
        List<int[]> result = slope(s, t, flowLimit);
        return result.get(result.size() - 1);
    }

    public List<int[]> slope(int s, int t, Integer flowLimit) {
        assert (0 <= s && s < n);
        assert (0 <= t && t < n);
        assert (s != t);

        if (flowLimit == null) {
            flowLimit = graph.get(s).stream().mapToInt(e -> e.cap).sum();
        }

        int[] dual = new int[n];
        Tuple[] prev = new Tuple[n];

        List<int[]> result = new ArrayList<>();
        result.add(new int[] {0, 0});

        while (true) {
            if (!refineDual(s, t, dual, prev)) {
                break;
            }

            int f = flowLimit;
            int v = t;
            while (prev[v] != null) {
                Tuple tuple = prev[v];
                int u = tuple.first;
                _Edge e = tuple.second;
                f = Math.min(f, e.cap);
                v = u;
            }

            v = t;
            while (prev[v] != null) {
                Tuple tuple = prev[v];
                int u = tuple.first;
                _Edge e = tuple.second;
                e.cap -= f;
                e.rev.cap += f;
                v = u;
            }

            int c = -dual[s];
            result.add(new int[] {
                result.get(result.size() - 1)[0] + f, result.get(result.size() - 1)[1] + f * c});

            if (c == result.get(result.size() - 2)[1]) {
                result.remove(result.size() - 2);
            }
        }

        return result;
    }

    private boolean refineDual(int s, int t, int[] dual, Tuple[] prev) {
        PriorityQueue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
        pq.add(new int[] {0, s});
        boolean[] visited = new boolean[n];
        Integer[] dist = new Integer[n];
        Arrays.fill(dist, null);
        dist[s] = 0;

        while (!pq.isEmpty()) {
            int[] current = pq.poll();
            int distV = current[0];
            int v = current[1];

            if (visited[v]) continue;
            visited[v] = true;

            if (v == t) break;

            int dualV = dual[v];
            for (_Edge e : graph.get(v)) {
                int w = e.dst;
                if (visited[w] || e.cap == 0) continue;

                int reducedCost = e.cost - dual[w] + dualV;
                int newDist = distV + reducedCost;
                Integer distW = dist[w];

                if (distW == null || newDist < distW) {
                    dist[w] = newDist;
                    prev[w] = new Tuple(v, e);
                    pq.add(new int[] {newDist, w});
                }
            }
        }

        if (!visited[t]) return false;

        int distT = dist[t];
        for (int v = 0; v < n; v++) {
            if (visited[v]) {
                dual[v] -= distT - dist[v];
            }
        }

        return true;
    }

    static class Tuple {
        int first;
        _Edge second;

        Tuple(int first, _Edge second) {
            this.first = first;
            this.second = second;
        }
    }
}

class Solution {
    public int findMinimumTime(int[] strength) {
        int n = strength.length;
        int s = n * 2;
        int t = s + 1;
        MCFGraph g = new MCFGraph(t + 1);

        for (int i = 0; i < n; i++) {
            g.addEdge(s, i, 1, 0);
            g.addEdge(i + n, t, 1, 0);
            for (int j = 0; j < n; j++) {
                g.addEdge(i, j + n, 1, (strength[i] - 1) / (j + 1) + 1);
            }
        }

        return g.flow(s, t, n)[1];
    }
}
1

1

评论