题目描述
给定一个由唯一字符串构成的 0 索引 数组 words
。
回文对 是一对整数 (i, j)
,满足以下条件:
0 <= i, j < words.length
,
i != j
,并且
words[i] + words[j]
(两个字符串的连接)是一个回文串。
返回一个数组,它包含 words
中所有满足 回文对 条件的字符串。
你必须设计一个时间复杂度为 O(sum of words[i].length)
的算法。
示例 1:
输入:words = ["abcd","dcba","lls","s","sssll"]
输出:[[0,1],[1,0],[3,2],[2,4]]
解释:可拼接成的回文串为 ["dcbaabcd","abcddcba","slls","llssssll"]
示例 2:
输入:words = ["bat","tab","cat"]
输出:[[0,1],[1,0]]
解释:可拼接成的回文串为 ["battab","tabbat"]
示例 3:
输入:words = ["a",""]
输出:[[0,1],[1,0]]
提示:
1 <= words.length <= 5000
0 <= words[i].length <= 300
words[i]
由小写英文字母组成
解法
方法一:字符串哈希
字符串哈希是把一个任意长度的字符串映射成一个非负整数,并且其冲突的概率几乎为 $0$。字符串哈希用于计算字符串哈希值,快速判断两个字符串是否相等。
取一固定值 $BASE$,把字符串看作是 $BASE$ 进制数,并分配一个大于 $0$ 的数值,代表每种字符。一般来说,我们分配的数值都远小于 $BASE$。例如,对于小写字母构成的字符串,可以令 $a=1$, $b=2$, ..., $z=26$。取一固定值 $MOD$,求出该 $BASE$ 进制对 $M$ 的余数,作为该字符串的 $hash$ 值。
一般来说,取 $BASE=131$ 或者 $BASE=13331$,此时 $hash$ 值产生的冲突概率极低。只要两个字符串 $hash$ 值相同,我们就认为两个字符串是相等的。通常 $MOD$ 取 $2^{64}$,C++ 里,可以直接使用 unsigned long long
类型存储这个 $hash$ 值,在计算时不处理算术溢出问题,产生溢出时相当于自动对 $2^{64}$ 取模,这样可以避免低效取模运算。
除了在极特殊构造的数据上,上述 $hash$ 算法很难产生冲突,一般情况下上述 $hash$ 算法完全可以出现在题目的标准答案中。我们还可以多取一些恰当的 $BASE$ 和 $MOD$ 的值(例如大质数),多进行几组 $hash$ 运算,当结果都相同时才认为原字符串相等,就更加难以构造出使这个 $hash$ 产生错误的数据。
1
2
3
4
5
6
7
8
9
10
11
12
13 | class Solution:
def palindromePairs(self, words: List[str]) -> List[List[int]]:
d = {w: i for i, w in enumerate(words)}
ans = []
for i, w in enumerate(words):
for j in range(len(w) + 1):
a, b = w[:j], w[j:]
ra, rb = a[::-1], b[::-1]
if ra in d and d[ra] != i and b == rb:
ans.append([i, d[ra]])
if j and rb in d and d[rb] != i and a == ra:
ans.append([d[rb], i])
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 | class Solution {
private static final int BASE = 131;
private static final long[] MUL = new long[310];
private static final int MOD = (int) 1e9 + 7;
static {
MUL[0] = 1;
for (int i = 1; i < MUL.length; ++i) {
MUL[i] = (MUL[i - 1] * BASE) % MOD;
}
}
public List<List<Integer>> palindromePairs(String[] words) {
int n = words.length;
long[] prefix = new long[n];
long[] suffix = new long[n];
for (int i = 0; i < n; ++i) {
String word = words[i];
int m = word.length();
for (int j = 0; j < m; ++j) {
int t = word.charAt(j) - 'a' + 1;
int s = word.charAt(m - j - 1) - 'a' + 1;
prefix[i] = (prefix[i] * BASE) % MOD + t;
suffix[i] = (suffix[i] * BASE) % MOD + s;
}
}
List<List<Integer>> ans = new ArrayList<>();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (check(i, j, words[j].length(), words[i].length(), prefix, suffix)) {
ans.add(Arrays.asList(i, j));
}
if (check(j, i, words[i].length(), words[j].length(), prefix, suffix)) {
ans.add(Arrays.asList(j, i));
}
}
}
return ans;
}
private boolean check(int i, int j, int n, int m, long[] prefix, long[] suffix) {
long t = ((prefix[i] * MUL[n]) % MOD + prefix[j]) % MOD;
long s = ((suffix[j] * MUL[m]) % MOD + suffix[i]) % MOD;
return t == s;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 | func palindromePairs(words []string) [][]int {
base := 131
mod := int(1e9) + 7
mul := make([]int, 310)
mul[0] = 1
for i := 1; i < len(mul); i++ {
mul[i] = (mul[i-1] * base) % mod
}
n := len(words)
prefix := make([]int, n)
suffix := make([]int, n)
for i, word := range words {
m := len(word)
for j, c := range word {
t := int(c-'a') + 1
s := int(word[m-j-1]-'a') + 1
prefix[i] = (prefix[i]*base)%mod + t
suffix[i] = (suffix[i]*base)%mod + s
}
}
check := func(i, j, n, m int) bool {
t := ((prefix[i]*mul[n])%mod + prefix[j]) % mod
s := ((suffix[j]*mul[m])%mod + suffix[i]) % mod
return t == s
}
var ans [][]int
for i := 0; i < n; i++ {
for j := i + 1; j < n; j++ {
if check(i, j, len(words[j]), len(words[i])) {
ans = append(ans, []int{i, j})
}
if check(j, i, len(words[i]), len(words[j])) {
ans = append(ans, []int{j, i})
}
}
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 | using System.Collections.Generic;
using System.Linq;
public class Solution {
public IList<IList<int>> PalindromePairs(string[] words) {
var results = new List<IList<int>>();
var reverseDict = words.Select((w, i) => new {Word = w, Index = i}).ToDictionary(w => new string(w.Word.Reverse().ToArray()), w => w.Index);
for (var i = 0; i < words.Length; ++i)
{
var word = words[i];
for (var j = 0; j <= word.Length; ++j)
{
if (j > 0 && IsPalindrome(word, 0, j - 1))
{
var suffix = word.Substring(j);
int pairIndex;
if (reverseDict.TryGetValue(suffix, out pairIndex) && i != pairIndex)
{
results.Add(new [] { pairIndex, i});
}
}
if (IsPalindrome(word, j, word.Length - 1))
{
var prefix = word.Substring(0, j);
int pairIndex;
if (reverseDict.TryGetValue(prefix, out pairIndex) && i != pairIndex)
{
results.Add(new [] { i, pairIndex});
}
}
}
}
return results;
}
private bool IsPalindrome(string word, int startIndex, int endIndex)
{
var i = startIndex;
var j = endIndex;
while (i < j)
{
if (word[i] != word[j]) return false;
++i;
--j;
}
return true;
}
}
|
方法二:前缀树
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78 | class Trie {
Trie[] children = new Trie[26];
Integer v;
void insert(String w, int i) {
Trie node = this;
for (char c : w.toCharArray()) {
c -= 'a';
if (node.children[c] == null) {
node.children[c] = new Trie();
}
node = node.children[c];
}
node.v = i;
}
Integer search(String w, int i, int j) {
Trie node = this;
for (int k = j; k >= i; --k) {
int idx = w.charAt(k) - 'a';
if (node.children[idx] == null) {
return null;
}
node = node.children[idx];
}
return node.v;
}
}
class Solution {
public List<List<Integer>> palindromePairs(String[] words) {
Trie trie = new Trie();
int n = words.length;
for (int i = 0; i < n; ++i) {
trie.insert(words[i], i);
}
List<List<Integer>> ans = new ArrayList<>();
for (int i = 0; i < n; ++i) {
String w = words[i];
int m = w.length();
for (int j = 0; j <= m; ++j) {
if (isPalindrome(w, j, m - 1)) {
Integer k = trie.search(w, 0, j - 1);
if (k != null && k != i) {
ans.add(Arrays.asList(i, k));
}
}
if (j != 0 && isPalindrome(w, 0, j - 1)) {
Integer k = trie.search(w, j, m - 1);
if (k != null && k != i) {
ans.add(Arrays.asList(k, i));
}
}
}
}
return ans;
}
// TLE
// private boolean isPalindrome(String w, int i, int j) {
// for (; i < j; ++i, --j) {
// if (w.charAt(i) != w.charAt(j)) {
// return false;
// }
// }
// return true;
// }
private boolean isPalindrome(String w, int start, int end) {
int i = start, j = end;
for (; i < j; ++i, --j) {
if (w.charAt(i) != w.charAt(j)) {
return false;
}
}
return true;
}
}
|