跳转至

3344. 最大尺寸数组 🔒

题目描述

给定一个正整数 s,令 A 为一个 n × n × n 的三维数组,其中每个元素 A[i][j][k] 定义为:

  • A[i][j][k] = i * (j OR k),其中 0 <= i, j, k < n

返回使数组 A 中所有元素的和不超过 s 的 最大的 n

 

示例 1:

输入:s = 10

输出:2

解释:

  • n = 2 时数组 A 的元素:
    • A[0][0][0] = 0 * (0 OR 0) = 0
    • A[0][0][1] = 0 * (0 OR 1) = 0
    • A[0][1][0] = 0 * (1 OR 0) = 0
    • A[0][1][1] = 0 * (1 OR 1) = 0
    • A[1][0][0] = 1 * (0 OR 0) = 0
    • A[1][0][1] = 1 * (0 OR 1) = 1
    • A[1][1][0] = 1 * (1 OR 0) = 1
    • A[1][1][1] = 1 * (1 OR 1) = 1
  • 数组 A 中元素的总和为 3,没有超过 10,所以 n 的最大值为 2。

示例 2:

输入:s = 0

输出:1

解释:

  • n = 1 时数组 A 的元素:
    • A[0][0][0] = 0 * (0 OR 0) = 0
  • 数组 A 中元素的总和为 0,没有超过 0,所以 n 的最大值为 1。

 

提示:

  • 0 <= s <= 1015

解法

方法一:预处理 + 二分查找

我们可以粗略估算出 $n$ 的最大值,对于 $j \lor k$,结果的和大致为 $n^2 (n - 1) / 2$,再与 $i \in [0, n)$ 的每个 $i$ 相乘,结果约等于 $(n-1)^5 / 4$,要使得 $(n - 1)^5 / 4 \leq s$,那么 $n \leq 1320$。

因此,我们不妨预处理出 $f[n] = \sum_{i=0}^{n-1} \sum_{j=0}^{i} (i \lor j)$,然后使用二分查找找到最大的 $n$,使得 $f[n-1] \cdot (n-1) \cdot n / 2 \leq s$。

时间复杂度方面,预处理的时间复杂度为 $O(n^2)$,二分查找的时间复杂度为 $O(\log n)$,因此总时间复杂度为 $O(n^2 + \log n)$。空间复杂度为 $O(n)$。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
mx = 1330
f = [0] * mx
for i in range(1, mx):
    f[i] = f[i - 1] + i
    for j in range(i):
        f[i] += 2 * (i | j)


class Solution:
    def maxSizedArray(self, s: int) -> int:
        l, r = 1, mx
        while l < r:
            m = (l + r + 1) >> 1
            if f[m - 1] * (m - 1) * m // 2 <= s:
                l = m
            else:
                r = m - 1
        return l
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
    private static final int MX = 1330;
    private static final long[] f = new long[MX];
    static {
        for (int i = 1; i < MX; ++i) {
            f[i] = f[i - 1] + i;
            for (int j = 0; j < i; ++j) {
                f[i] += 2 * (i | j);
            }
        }
    }
    public int maxSizedArray(long s) {
        int l = 1, r = MX;
        while (l < r) {
            int m = (l + r + 1) >> 1;
            if (f[m - 1] * (m - 1) * m / 2 <= s) {
                l = m;
            } else {
                r = m - 1;
            }
        }
        return l;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
const int MX = 1330;
long long f[MX];
auto init = [] {
    f[0] = 0;
    for (int i = 1; i < MX; ++i) {
        f[i] = f[i - 1] + i;
        for (int j = 0; j < i; ++j) {
            f[i] += 2 * (i | j);
        }
    }
    return 0;
}();

class Solution {
public:
    int maxSizedArray(long long s) {
        int l = 1, r = MX;
        while (l < r) {
            int m = (l + r + 1) >> 1;
            if (f[m - 1] * (m - 1) * m / 2 <= s) {
                l = m;
            } else {
                r = m - 1;
            }
        }
        return l;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
const MX = 1330

var f [MX]int64

func init() {
    f[0] = 0
    for i := 1; i < MX; i++ {
        f[i] = f[i-1] + int64(i)
        for j := 0; j < i; j++ {
            f[i] += 2 * int64(i|j)
        }
    }
}

func maxSizedArray(s int64) int {
    l, r := 1, MX
    for l < r {
        m := (l + r + 1) >> 1
        if f[m-1]*int64(m-1)*int64(m)/2 <= s {
            l = m
        } else {
            r = m - 1
        }
    }
    return l
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
const MX = 1330;
const f: bigint[] = Array(MX).fill(0n);
(() => {
    f[0] = 0n;
    for (let i = 1; i < MX; i++) {
        f[i] = f[i - 1] + BigInt(i);
        for (let j = 0; j < i; j++) {
            f[i] += BigInt(2) * BigInt(i | j);
        }
    }
})();

function maxSizedArray(s: number): number {
    let l = 1,
        r = MX;
    const target = BigInt(s);

    while (l < r) {
        const m = (l + r + 1) >> 1;
        if ((f[m - 1] * BigInt(m - 1) * BigInt(m)) / BigInt(2) <= target) {
            l = m;
        } else {
            r = m - 1;
        }
    }
    return l;
}

评论