题目描述
给定三个整数 n
,m
和 k
。
一个数组 arr
如果 恰好 有 k
个下标,其中的每个下标 i
(0 <= i < n - 1
) 满足下述条件,则被称为是 K 偶数的:
(arr[i] * arr[i + 1]) - arr[i] - arr[i + 1]
是偶数。
返回长度为 n
的满足 K 偶数 的数组的数量,其中所有元素的范围在 [1, m]
。
因为答案可能很大,返回答案对 109 + 7
取模。
示例 1:
输入:n = 3, m = 4, k = 2
输出:8
解释:
8 个满足的 2 偶数的数组是:
[2, 2, 2]
[2, 2, 4]
[2, 4, 2]
[2, 4, 4]
[4, 2, 2]
[4, 2, 4]
[4, 4, 2]
[4, 4, 4]
示例 2:
输入:n = 5, m = 1, k = 0
输出:1
解释:
仅有的 0 偶数的数组是 [1, 1, 1, 1, 1]
。
示例 3:
输入:n = 7, m = 7, k = 5
输出:5832
提示:
1 <= n <= 750
0 <= k <= n - 1
1 <= m <= 1000
解法
方法一:记忆化搜索
由于有 $[1, m]$ 个数,那么偶数有 $\textit{cnt0} = \lfloor \frac{m}{2} \rfloor$ 个,奇数有 $\textit{cnt1} = m - \textit{cnt0}$ 个。
我们设计一个函数 $\textit{dfs}(i, j, k)$,表示当前已经填到第 $i$ 个位置,剩余 $j$ 个位置需要满足条件,且上一个位置的奇偶性为 $k$ 的方案数,其中 $k = 0$ 表示上一个位置为偶数,而 $k = 1$ 表示上一个位置为奇数。那么答案就是 $\textit{dfs}(0, k, 1)$。
函数 $\textit{dfs}(i, j, k)$ 的执行逻辑如下:
- 如果 $j < 0$,表示剩余位置数小于 $0$,直接返回 $0$;
- 如果 $i \ge n$,表示已经填完了,如果此时 $j = 0$,表示满足条件,返回 $1$,否则返回 $0$;
- 否则,我们可以选择填奇数或者偶数,分别计算填奇数和填偶数的方案数,最后返回两者之和。
时间复杂度 $O(n \times k)$,空间复杂度 $O(n \times k)$。其中 $n$ 和 $k$ 为题目给定的参数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution:
def countOfArrays(self, n: int, m: int, k: int) -> int:
@cache
def dfs(i: int, j: int, k: int) -> int:
if j < 0:
return 0
if i >= n:
return int(j == 0)
return (
cnt1 * dfs(i + 1, j, 1) + cnt0 * dfs(i + 1, j - (k & 1 ^ 1), 0)
) % mod
cnt0 = m // 2
cnt1 = m - cnt0
mod = 10**9 + 7
ans = dfs(0, k, 1)
dfs.cache_clear()
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | class Solution {
private Integer[][][] f;
private long cnt0, cnt1;
private final int mod = (int) 1e9 + 7;
public int countOfArrays(int n, int m, int k) {
f = new Integer[n][k + 1][2];
cnt0 = m / 2;
cnt1 = m - cnt0;
return dfs(0, k, 1);
}
private int dfs(int i, int j, int k) {
if (j < 0) {
return 0;
}
if (i >= f.length) {
return j == 0 ? 1 : 0;
}
if (f[i][j][k] != null) {
return f[i][j][k];
}
int a = (int) (cnt1 * dfs(i + 1, j, 1) % mod);
int b = (int) (cnt0 * dfs(i + 1, j - (k & 1 ^ 1), 0) % mod);
return f[i][j][k] = (a + b) % mod;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | class Solution {
public:
int countOfArrays(int n, int m, int k) {
int f[n][k + 1][2];
memset(f, -1, sizeof(f));
const int mod = 1e9 + 7;
int cnt0 = m / 2;
int cnt1 = m - cnt0;
auto dfs = [&](auto&& dfs, int i, int j, int k) -> int {
if (j < 0) {
return 0;
}
if (i >= n) {
return j == 0 ? 1 : 0;
}
if (f[i][j][k] != -1) {
return f[i][j][k];
}
int a = 1LL * cnt1 * dfs(dfs, i + 1, j, 1) % mod;
int b = 1LL * cnt0 * dfs(dfs, i + 1, j - (k & 1 ^ 1), 0) % mod;
return f[i][j][k] = (a + b) % mod;
};
return dfs(dfs, 0, k, 1);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | func countOfArrays(n int, m int, k int) int {
f := make([][][2]int, n)
for i := range f {
f[i] = make([][2]int, k+1)
for j := range f[i] {
f[i][j] = [2]int{-1, -1}
}
}
const mod int = 1e9 + 7
cnt0 := m / 2
cnt1 := m - cnt0
var dfs func(int, int, int) int
dfs = func(i, j, k int) int {
if j < 0 {
return 0
}
if i >= n {
if j == 0 {
return 1
}
return 0
}
if f[i][j][k] != -1 {
return f[i][j][k]
}
a := cnt1 * dfs(i+1, j, 1) % mod
b := cnt0 * dfs(i+1, j-(k&1^1), 0) % mod
f[i][j][k] = (a + b) % mod
return f[i][j][k]
}
return dfs(0, k, 1)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | function countOfArrays(n: number, m: number, k: number): number {
const f = Array.from({ length: n }, () =>
Array.from({ length: k + 1 }, () => Array(2).fill(-1)),
);
const mod = 1e9 + 7;
const cnt0 = Math.floor(m / 2);
const cnt1 = m - cnt0;
const dfs = (i: number, j: number, k: number): number => {
if (j < 0) {
return 0;
}
if (i >= n) {
return j === 0 ? 1 : 0;
}
if (f[i][j][k] !== -1) {
return f[i][j][k];
}
const a = (cnt1 * dfs(i + 1, j, 1)) % mod;
const b = (cnt0 * dfs(i + 1, j - ((k & 1) ^ 1), 0)) % mod;
return (f[i][j][k] = (a + b) % mod);
};
return dfs(0, k, 1);
}
|
方法二:动态规划
我们可以将方法一的记忆化搜索转换为动态规划。
定义 $f[i][j][k]$ 表示当前已经填完第 $i$ 个位置,且有 $j$ 个位置满足条件,且上一个位置的奇偶性为 $k$ 的方案数。那么答案就是 $\sum_{k = 0}^{1} f[n][k]$。
初始时,我们将 $f[0][0][1]$ 置为 $1$,表示填完第 $0$ 个位置,且有 $0$ 个位置满足条件,且上一个位置的奇偶性为奇数的方案数为 $1$。其余 $f[i][j][k] = 0$。
状态转移方程如下:
$$
\begin{aligned}
f[i][j][0] &= \left( f[i - 1][j][1] + \left( f[i - 1][j - 1][0] \text{ if } j > 0 \right) \right) \times \textit{cnt0} \bmod \textit{mod}, \
f[i][j][1] &= \left( f[i - 1][j][0] + f[i - 1][j][1] \right) \times \textit{cnt1} \bmod \textit{mod}.
\end{aligned}
$$
时间复杂度 $O(n \times k)$,空间复杂度 $O(n \times k)$。其中 $n$ 和 $k$ 为题目给定的参数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution:
def countOfArrays(self, n: int, m: int, k: int) -> int:
f = [[[0] * 2 for _ in range(k + 1)] for _ in range(n + 1)]
cnt0 = m // 2
cnt1 = m - cnt0
mod = 10**9 + 7
f[0][0][1] = 1
for i in range(1, n + 1):
for j in range(k + 1):
f[i][j][0] = (
(f[i - 1][j][1] + (f[i - 1][j - 1][0] if j else 0)) * cnt0 % mod
)
f[i][j][1] = (f[i - 1][j][0] + f[i - 1][j][1]) * cnt1 % mod
return sum(f[n][k]) % mod
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
public int countOfArrays(int n, int m, int k) {
int[][][] f = new int[n + 1][k + 1][2];
int cnt0 = m / 2;
int cnt1 = m - cnt0;
final int mod = (int) 1e9 + 7;
f[0][0][1] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= k; ++j) {
f[i][j][0]
= (int) (1L * cnt0 * (f[i - 1][j][1] + (j > 0 ? f[i - 1][j - 1][0] : 0)) % mod);
f[i][j][1] = (int) (1L * cnt1 * (f[i - 1][j][0] + f[i - 1][j][1]) % mod);
}
}
return (f[n][k][0] + f[n][k][1]) % mod;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution {
public:
int countOfArrays(int n, int m, int k) {
int f[n + 1][k + 1][2];
memset(f, 0, sizeof(f));
f[0][0][1] = 1;
const int mod = 1e9 + 7;
int cnt0 = m / 2;
int cnt1 = m - cnt0;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= k; ++j) {
f[i][j][0] = 1LL * (f[i - 1][j][1] + (j ? f[i - 1][j - 1][0] : 0)) * cnt0 % mod;
f[i][j][1] = 1LL * (f[i - 1][j][0] + f[i - 1][j][1]) * cnt1 % mod;
}
}
return (f[n][k][0] + f[n][k][1]) % mod;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | func countOfArrays(n int, m int, k int) int {
f := make([][][2]int, n+1)
for i := range f {
f[i] = make([][2]int, k+1)
}
f[0][0][1] = 1
cnt0 := m / 2
cnt1 := m - cnt0
const mod int = 1e9 + 7
for i := 1; i <= n; i++ {
for j := 0; j <= k; j++ {
f[i][j][0] = cnt0 * f[i-1][j][1] % mod
if j > 0 {
f[i][j][0] = (f[i][j][0] + cnt0*f[i-1][j-1][0]%mod) % mod
}
f[i][j][1] = cnt1 * (f[i-1][j][0] + f[i-1][j][1]) % mod
}
}
return (f[n][k][0] + f[n][k][1]) % mod
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | function countOfArrays(n: number, m: number, k: number): number {
const f: number[][][] = Array.from({ length: n + 1 }, () =>
Array.from({ length: k + 1 }, () => Array(2).fill(0)),
);
f[0][0][1] = 1;
const mod = 1e9 + 7;
const cnt0 = Math.floor(m / 2);
const cnt1 = m - cnt0;
for (let i = 1; i <= n; ++i) {
for (let j = 0; j <= k; ++j) {
f[i][j][0] = (cnt0 * (f[i - 1][j][1] + (j ? f[i - 1][j - 1][0] : 0))) % mod;
f[i][j][1] = (cnt1 * (f[i - 1][j][0] + f[i - 1][j][1])) % mod;
}
}
return (f[n][k][0] + f[n][k][1]) % mod;
}
|
方法三:动态规划(空间优化)
我们注意到,对于 $f[i]$ 的计算只与 $f[i - 1]$ 有关,因此我们可以使用滚动数组优化空间。
时间复杂度 $O(n \times k)$,空间复杂度 $O(k)$。其中 $n$ 和 $k$ 为题目给定的参数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution:
def countOfArrays(self, n: int, m: int, k: int) -> int:
f = [[0] * 2 for _ in range(k + 1)]
cnt0 = m // 2
cnt1 = m - cnt0
mod = 10**9 + 7
f[0][1] = 1
for _ in range(n):
g = [[0] * 2 for _ in range(k + 1)]
for j in range(k + 1):
g[j][0] = (f[j][1] + (f[j - 1][0] if j else 0)) * cnt0 % mod
g[j][1] = (f[j][0] + f[j][1]) * cnt1 % mod
f = g
return sum(f[k]) % mod
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution {
public int countOfArrays(int n, int m, int k) {
int[][] f = new int[k + 1][2];
int cnt0 = m / 2;
int cnt1 = m - cnt0;
final int mod = (int) 1e9 + 7;
f[0][1] = 1;
for (int i = 0; i < n; ++i) {
int[][] g = new int[k + 1][2];
for (int j = 0; j <= k; ++j) {
g[j][0] = (int) (1L * cnt0 * (f[j][1] + (j > 0 ? f[j - 1][0] : 0)) % mod);
g[j][1] = (int) (1L * cnt1 * (f[j][0] + f[j][1]) % mod);
}
f = g;
}
return (f[k][0] + f[k][1]) % mod;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution {
public:
int countOfArrays(int n, int m, int k) {
vector<vector<int>> f(k + 1, vector<int>(2));
int cnt0 = m / 2;
int cnt1 = m - cnt0;
const int mod = 1e9 + 7;
f[0][1] = 1;
for (int i = 0; i < n; ++i) {
vector<vector<int>> g(k + 1, vector<int>(2));
for (int j = 0; j <= k; ++j) {
g[j][0] = (1LL * cnt0 * (f[j][1] + (j > 0 ? f[j - 1][0] : 0)) % mod) % mod;
g[j][1] = (1LL * cnt1 * (f[j][0] + f[j][1]) % mod) % mod;
}
f = g;
}
return (f[k][0] + f[k][1]) % mod;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | func countOfArrays(n int, m int, k int) int {
const mod = 1e9 + 7
cnt0 := m / 2
cnt1 := m - cnt0
f := make([][2]int, k+1)
f[0][1] = 1
for i := 0; i < n; i++ {
g := make([][2]int, k+1)
for j := 0; j <= k; j++ {
g[j][0] = (cnt0 * (f[j][1] + func() int {
if j > 0 {
return f[j-1][0]
}
return 0
}()) % mod) % mod
g[j][1] = (cnt1 * (f[j][0] + f[j][1]) % mod) % mod
}
f = g
}
return (f[k][0] + f[k][1]) % mod
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | function countOfArrays(n: number, m: number, k: number): number {
const mod = 1e9 + 7;
const cnt0 = Math.floor(m / 2);
const cnt1 = m - cnt0;
const f: number[][] = Array.from({ length: k + 1 }, () => [0, 0]);
f[0][1] = 1;
for (let i = 0; i < n; i++) {
const g: number[][] = Array.from({ length: k + 1 }, () => [0, 0]);
for (let j = 0; j <= k; j++) {
g[j][0] = ((cnt0 * (f[j][1] + (j > 0 ? f[j - 1][0] : 0))) % mod) % mod;
g[j][1] = ((cnt1 * (f[j][0] + f[j][1])) % mod) % mod;
}
f.splice(0, f.length, ...g);
}
return (f[k][0] + f[k][1]) % mod;
}
|