跳转至

3334. 数组的最大因子得分

题目描述

给你一个整数数组 nums

因子得分 定义为数组所有元素的最小公倍数(LCM)与最大公约数(GCD)的 乘积

最多 移除一个元素的情况下,返回 nums 最大因子得分

注意,单个数字的 LCMGCD 都是其本身,而 空数组 的因子得分为 0。

 

示例 1:

输入: nums = [2,4,8,16]

输出: 64

解释:

移除数字 2 后,剩余元素的 GCD 为 4,LCM 为 16,因此最大因子得分为 4 * 16 = 64

示例 2:

输入: nums = [1,2,3,4,5]

输出: 60

解释:

无需移除任何元素即可获得最大因子得分 60。

示例 3:

输入: nums = [3]

输出: 9

 

提示:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 30

解法

方法一

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution:
    def maxScore(self, nums: List[int]) -> int:
        n = len(nums)
        suf_gcd = [0] * (n + 1)
        suf_lcm = [0] * n + [1]
        for i in range(n - 1, -1, -1):
            suf_gcd[i] = gcd(suf_gcd[i + 1], nums[i])
            suf_lcm[i] = lcm(suf_lcm[i + 1], nums[i])
        ans = suf_gcd[0] * suf_lcm[0]
        pre_gcd, pre_lcm = 0, 1
        for i, x in enumerate(nums):
            ans = max(ans, gcd(pre_gcd, suf_gcd[i + 1]) * lcm(pre_lcm, suf_lcm[i + 1]))
            pre_gcd = gcd(pre_gcd, x)
            pre_lcm = lcm(pre_lcm, x)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
    public long maxScore(int[] nums) {
        int n = nums.length;
        long[] sufGcd = new long[n + 1];
        long[] sufLcm = new long[n + 1];
        sufLcm[n] = 1;
        for (int i = n - 1; i >= 0; --i) {
            sufGcd[i] = gcd(sufGcd[i + 1], nums[i]);
            sufLcm[i] = lcm(sufLcm[i + 1], nums[i]);
        }
        long ans = sufGcd[0] * sufLcm[0];
        long preGcd = 0, preLcm = 1;
        for (int i = 0; i < n; ++i) {
            ans = Math.max(ans, gcd(preGcd, sufGcd[i + 1]) * lcm(preLcm, sufLcm[i + 1]));
            preGcd = gcd(preGcd, nums[i]);
            preLcm = lcm(preLcm, nums[i]);
        }
        return ans;
    }

    private long gcd(long a, long b) {
        return b == 0 ? a : gcd(b, a % b);
    }

    private long lcm(long a, long b) {
        return a / gcd(a, b) * b;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
    long long maxScore(vector<int>& nums) {
        int n = nums.size();
        vector<long long> sufGcd(n + 1, 0);
        vector<long long> sufLcm(n + 1, 1);
        for (int i = n - 1; i >= 0; --i) {
            sufGcd[i] = gcd(sufGcd[i + 1], nums[i]);
            sufLcm[i] = lcm(sufLcm[i + 1], nums[i]);
        }

        long long ans = sufGcd[0] * sufLcm[0];
        long long preGcd = 0, preLcm = 1;
        for (int i = 0; i < n; ++i) {
            ans = max(ans, gcd(preGcd, sufGcd[i + 1]) * lcm(preLcm, sufLcm[i + 1]));
            preGcd = gcd(preGcd, nums[i]);
            preLcm = lcm(preLcm, nums[i]);
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
func maxScore(nums []int) int64 {
    n := len(nums)
    sufGcd := make([]int64, n+1)
    sufLcm := make([]int64, n+1)
    sufLcm[n] = 1
    for i := n - 1; i >= 0; i-- {
        sufGcd[i] = gcd(sufGcd[i+1], int64(nums[i]))
        sufLcm[i] = lcm(sufLcm[i+1], int64(nums[i]))
    }

    ans := sufGcd[0] * sufLcm[0]
    preGcd, preLcm := int64(0), int64(1)
    for i := 0; i < n; i++ {
        ans = max(ans, gcd(preGcd, sufGcd[i+1])*lcm(preLcm, sufLcm[i+1]))
        preGcd = gcd(preGcd, int64(nums[i]))
        preLcm = lcm(preLcm, int64(nums[i]))
    }
    return ans
}

func gcd(a, b int64) int64 {
    if b == 0 {
        return a
    }
    return gcd(b, a%b)
}

func lcm(a, b int64) int64 {
    return a / gcd(a, b) * b
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
function maxScore(nums: number[]): number {
    const n = nums.length;
    const sufGcd: number[] = Array(n + 1).fill(0);
    const sufLcm: number[] = Array(n + 1).fill(1);
    for (let i = n - 1; i >= 0; i--) {
        sufGcd[i] = gcd(sufGcd[i + 1], nums[i]);
        sufLcm[i] = lcm(sufLcm[i + 1], nums[i]);
    }

    let ans = sufGcd[0] * sufLcm[0];
    let preGcd = 0,
        preLcm = 1;
    for (let i = 0; i < n; i++) {
        ans = Math.max(ans, gcd(preGcd, sufGcd[i + 1]) * lcm(preLcm, sufLcm[i + 1]));
        preGcd = gcd(preGcd, nums[i]);
        preLcm = lcm(preLcm, nums[i]);
    }
    return ans;
}

function gcd(a: number, b: number): number {
    return b === 0 ? a : gcd(b, a % b);
}

function lcm(a: number, b: number): number {
    return (a / gcd(a, b)) * b;
}

评论