题目描述
给你一份航线列表 tickets
,其中 tickets[i] = [fromi, toi]
表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK
(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK
开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
- 例如,行程
["JFK", "LGA"]
与 ["JFK", "LGB"]
相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。
示例 1:
输入:tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
输出:["JFK","MUC","LHR","SFO","SJC"]
示例 2:
输入:tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
输出:["JFK","ATL","JFK","SFO","ATL","SFO"]
解释:另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"] ,但是它字典排序更大更靠后。
提示:
1 <= tickets.length <= 300
tickets[i].length == 2
fromi.length == 3
toi.length == 3
fromi
和 toi
由大写英文字母组成
fromi != toi
解法
方法一:欧拉路径
题目实际上是给定 $n$ 个点和 $m$ 条边,要求从指定的起点出发,经过所有的边恰好一次,使得路径字典序最小。这是一个典型的欧拉路径问题。
由于本题保证了至少存在一种合理的行程,因此,我们直接利用 Hierholzer 算法,输出从起点出发的欧拉路径即可。
时间复杂度 $O(m \times \log m)$,空间复杂度 $O(m)$。其中 $m$ 是边的数量。
1
2
3
4
5
6
7
8
9
10
11
12
13 | class Solution:
def findItinerary(self, tickets: List[List[str]]) -> List[str]:
def dfs(f: str):
while g[f]:
dfs(g[f].pop())
ans.append(f)
g = defaultdict(list)
for f, t in sorted(tickets, reverse=True):
g[f].append(t)
ans = []
dfs("JFK")
return ans[::-1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution {
private Map<String, List<String>> g = new HashMap<>();
private List<String> ans = new ArrayList<>();
public List<String> findItinerary(List<List<String>> tickets) {
Collections.sort(tickets, (a, b) -> b.get(1).compareTo(a.get(1)));
for (List<String> ticket : tickets) {
g.computeIfAbsent(ticket.get(0), k -> new ArrayList<>()).add(ticket.get(1));
}
dfs("JFK");
Collections.reverse(ans);
return ans;
}
private void dfs(String f) {
while (g.containsKey(f) && !g.get(f).isEmpty()) {
String t = g.get(f).remove(g.get(f).size() - 1);
dfs(t);
}
ans.add(f);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | class Solution {
public:
vector<string> findItinerary(vector<vector<string>>& tickets) {
sort(tickets.rbegin(), tickets.rend());
unordered_map<string, vector<string>> g;
for (const auto& ticket : tickets) {
g[ticket[0]].push_back(ticket[1]);
}
vector<string> ans;
auto dfs = [&](auto&& dfs, string& f) -> void {
while (!g[f].empty()) {
string t = g[f].back();
g[f].pop_back();
dfs(dfs, t);
}
ans.emplace_back(f);
};
string f = "JFK";
dfs(dfs, f);
reverse(ans.begin(), ans.end());
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | func findItinerary(tickets [][]string) (ans []string) {
sort.Slice(tickets, func(i, j int) bool {
return tickets[i][0] > tickets[j][0] || (tickets[i][0] == tickets[j][0] && tickets[i][1] > tickets[j][1])
})
g := make(map[string][]string)
for _, ticket := range tickets {
g[ticket[0]] = append(g[ticket[0]], ticket[1])
}
var dfs func(f string)
dfs = func(f string) {
for len(g[f]) > 0 {
t := g[f][len(g[f])-1]
g[f] = g[f][:len(g[f])-1]
dfs(t)
}
ans = append(ans, f)
}
dfs("JFK")
for i := 0; i < len(ans)/2; i++ {
ans[i], ans[len(ans)-1-i] = ans[len(ans)-1-i], ans[i]
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | function findItinerary(tickets: string[][]): string[] {
const g: Record<string, string[]> = {};
tickets.sort((a, b) => b[1].localeCompare(a[1]));
for (const [f, t] of tickets) {
g[f] = g[f] || [];
g[f].push(t);
}
const ans: string[] = [];
const dfs = (f: string) => {
while (g[f] && g[f].length) {
const t = g[f].pop()!;
dfs(t);
}
ans.push(f);
};
dfs('JFK');
return ans.reverse();
}
|