题目描述
你有一个包含 n
个节点的图。给定一个整数 n
和一个数组 edges
,其中 edges[i] = [ai, bi]
表示图中 ai
和 bi
之间有一条边。
返回 图中已连接分量的数目 。
示例 1:
输入: n = 5, edges = [[0, 1], [1, 2], [3, 4]]
输出: 2
示例 2:
输入: n = 5, edges = [[0,1], [1,2], [2,3], [3,4]]
输出: 1
提示:
1 <= n <= 2000
1 <= edges.length <= 5000
edges[i].length == 2
0 <= ai <= bi < n
ai != bi
edges
中不会出现重复的边
解法
方法一:DFS
我们先根据给定的边构建一个邻接表 $g$,其中 $g[i]$ 表示节点 $i$ 的所有邻居节点。
然后我们遍历所有节点,对于每个节点,我们使用 DFS 遍历所有与其相邻的节点,并将其标记为已访问,直到所有与其相邻的节点都被访问过,这样我们就找到了一个连通分量,答案加一。然后我们继续遍历下一个未访问的节点,直到所有节点都被访问过。
时间复杂度 $O(n + m)$,空间复杂度 $O(n + m)$。其中 $n$ 和 $m$ 分别是节点数和边数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution:
def countComponents(self, n: int, edges: List[List[int]]) -> int:
def dfs(i: int) -> int:
if i in vis:
return 0
vis.add(i)
for j in g[i]:
dfs(j)
return 1
g = [[] for _ in range(n)]
for a, b in edges:
g[a].append(b)
g[b].append(a)
vis = set()
return sum(dfs(i) for i in range(n))
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | class Solution {
private List<Integer>[] g;
private boolean[] vis;
public int countComponents(int n, int[][] edges) {
g = new List[n];
vis = new boolean[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans += dfs(i);
}
return ans;
}
private int dfs(int i) {
if (vis[i]) {
return 0;
}
vis[i] = true;
for (int j : g[i]) {
dfs(j);
}
return 1;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | class Solution {
public:
int countComponents(int n, vector<vector<int>>& edges) {
vector<int> g[n];
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].push_back(b);
g[b].push_back(a);
}
vector<bool> vis(n);
function<int(int)> dfs = [&](int i) {
if (vis[i]) {
return 0;
}
vis[i] = true;
for (int j : g[i]) {
dfs(j);
}
return 1;
};
int ans = 0;
for (int i = 0; i < n; ++i) {
ans += dfs(i);
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | func countComponents(n int, edges [][]int) (ans int) {
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
vis := make([]bool, n)
var dfs func(int) int
dfs = func(i int) int {
if vis[i] {
return 0
}
vis[i] = true
for _, j := range g[i] {
dfs(j)
}
return 1
}
for i := range g {
ans += dfs(i)
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | function countComponents(n: number, edges: number[][]): number {
const g: number[][] = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
const vis: boolean[] = Array(n).fill(false);
const dfs = (i: number): number => {
if (vis[i]) {
return 0;
}
vis[i] = true;
for (const j of g[i]) {
dfs(j);
}
return 1;
};
return g.reduce((acc, _, i) => acc + dfs(i), 0);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | /**
* @param {number} n
* @param {number[][]} edges
* @return {number}
*/
var countComponents = function (n, edges) {
const g = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
const vis = Array(n).fill(false);
const dfs = i => {
if (vis[i]) {
return 0;
}
vis[i] = true;
for (const j of g[i]) {
dfs(j);
}
return 1;
};
return g.reduce((acc, _, i) => acc + dfs(i), 0);
};
|
方法二:并查集
我们可以使用并查集来维护图中的连通分量。
我们首先初始化一个并查集,然后遍历所有的边,对于每条边 $(a, b)$,我们将节点 $a$ 和节点 $b$ 合并到同一个连通分量中,如果连接成功,说明节点 $a$ 和节点 $b$ 之前不在同一个连通分量中,连通分量数目减一。
最后我们返回连通分量的数目。
时间复杂度 $O(n + m \times \alpha(n))$,空间复杂度 $O(n)$。其中 $n$ 和 $m$ 分别是节点数和边数,而 $\alpha(n)$ 是 Ackermann 函数的反函数,可以看作是一个很小的常数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | class UnionFind:
def __init__(self, n):
self.p = list(range(n))
self.size = [1] * n
def find(self, x):
if self.p[x] != x:
self.p[x] = self.find(self.p[x])
return self.p[x]
def union(self, a, b):
pa, pb = self.find(a), self.find(b)
if pa == pb:
return False
if self.size[pa] > self.size[pb]:
self.p[pb] = pa
self.size[pa] += self.size[pb]
else:
self.p[pa] = pb
self.size[pb] += self.size[pa]
return True
class Solution:
def countComponents(self, n: int, edges: List[List[int]]) -> int:
uf = UnionFind(n)
for a, b in edges:
n -= uf.union(a, b)
return n
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 | class UnionFind {
private final int[] p;
private final int[] size;
public UnionFind(int n) {
p = new int[n];
size = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
size[i] = 1;
}
}
public int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
public boolean union(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return false;
}
if (size[pa] > size[pb]) {
p[pb] = pa;
size[pa] += size[pb];
} else {
p[pa] = pb;
size[pb] += size[pa];
}
return true;
}
}
class Solution {
public int countComponents(int n, int[][] edges) {
UnionFind uf = new UnionFind(n);
for (var e : edges) {
n -= uf.union(e[0], e[1]) ? 1 : 0;
}
return n;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 | class UnionFind {
public:
UnionFind(int n) {
p = vector<int>(n);
size = vector<int>(n, 1);
iota(p.begin(), p.end(), 0);
}
bool unite(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return false;
}
if (size[pa] > size[pb]) {
p[pb] = pa;
size[pa] += size[pb];
} else {
p[pa] = pb;
size[pb] += size[pa];
}
return true;
}
int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
private:
vector<int> p, size;
};
class Solution {
public:
int countComponents(int n, vector<vector<int>>& edges) {
UnionFind uf(n);
for (auto& e : edges) {
n -= uf.unite(e[0], e[1]);
}
return n;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 | type unionFind struct {
p, size []int
}
func newUnionFind(n int) *unionFind {
p := make([]int, n)
size := make([]int, n)
for i := range p {
p[i] = i
size[i] = 1
}
return &unionFind{p, size}
}
func (uf *unionFind) find(x int) int {
if uf.p[x] != x {
uf.p[x] = uf.find(uf.p[x])
}
return uf.p[x]
}
func (uf *unionFind) union(a, b int) bool {
pa, pb := uf.find(a), uf.find(b)
if pa == pb {
return false
}
if uf.size[pa] > uf.size[pb] {
uf.p[pb] = pa
uf.size[pa] += uf.size[pb]
} else {
uf.p[pa] = pb
uf.size[pb] += uf.size[pa]
}
return true
}
func countComponents(n int, edges [][]int) int {
uf := newUnionFind(n)
for _, e := range edges {
if uf.union(e[0], e[1]) {
n--
}
}
return n
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | class UnionFind {
p: number[];
size: number[];
constructor(n: number) {
this.p = Array(n)
.fill(0)
.map((_, i) => i);
this.size = Array(n).fill(1);
}
find(x: number): number {
if (this.p[x] !== x) {
this.p[x] = this.find(this.p[x]);
}
return this.p[x];
}
union(a: number, b: number): boolean {
const [pa, pb] = [this.find(a), this.find(b)];
if (pa === pb) {
return false;
}
if (this.size[pa] > this.size[pb]) {
this.p[pb] = pa;
this.size[pa] += this.size[pb];
} else {
this.p[pa] = pb;
this.size[pb] += this.size[pa];
}
return true;
}
}
function countComponents(n: number, edges: number[][]): number {
const uf = new UnionFind(n);
for (const [a, b] of edges) {
n -= uf.union(a, b) ? 1 : 0;
}
return n;
}
|
方法三:BFS
我们也可以使用 BFS 来统计图中的连通分量。
与方法一类似,我们首先根据给定的边构建一个邻接表 $g$,然后遍历所有节点,对于每个节点,如果它没有被访问过,我们就从该节点开始进行 BFS 遍历,将所有与其相邻的节点都标记为已访问,直到所有与其相邻的节点都被访问过,这样我们就找到了一个连通分量,答案加一。
遍历所有节点后,我们就得到了图中连通分量的数目。
时间复杂度 $O(n + m)$,空间复杂度 $O(n + m)$。其中 $n$ 和 $m$ 分别是节点数和边数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution:
def countComponents(self, n: int, edges: List[List[int]]) -> int:
g = [[] for _ in range(n)]
for a, b in edges:
g[a].append(b)
g[b].append(a)
vis = set()
ans = 0
for i in range(n):
if i in vis:
continue
vis.add(i)
q = deque([i])
while q:
a = q.popleft()
for b in g[a]:
if b not in vis:
vis.add(b)
q.append(b)
ans += 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | class Solution {
public int countComponents(int n, int[][] edges) {
List<Integer>[] g = new List[n];
Arrays.setAll(g, k -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
int ans = 0;
boolean[] vis = new boolean[n];
for (int i = 0; i < n; ++i) {
if (vis[i]) {
continue;
}
vis[i] = true;
++ans;
Deque<Integer> q = new ArrayDeque<>();
q.offer(i);
while (!q.isEmpty()) {
int a = q.poll();
for (int b : g[a]) {
if (!vis[b]) {
vis[b] = true;
q.offer(b);
}
}
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | class Solution {
public:
int countComponents(int n, vector<vector<int>>& edges) {
vector<int> g[n];
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].push_back(b);
g[b].push_back(a);
}
vector<bool> vis(n);
int ans = 0;
for (int i = 0; i < n; ++i) {
if (vis[i]) {
continue;
}
vis[i] = true;
++ans;
queue<int> q{{i}};
while (!q.empty()) {
int a = q.front();
q.pop();
for (int b : g[a]) {
if (!vis[b]) {
vis[b] = true;
q.push(b);
}
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | func countComponents(n int, edges [][]int) (ans int) {
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
vis := make([]bool, n)
for i := range g {
if vis[i] {
continue
}
vis[i] = true
ans++
q := []int{i}
for len(q) > 0 {
a := q[0]
q = q[1:]
for _, b := range g[a] {
if !vis[b] {
vis[b] = true
q = append(q, b)
}
}
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | function countComponents(n: number, edges: number[][]): number {
const g: Map<number, number[]> = new Map(Array.from({ length: n }, (_, i) => [i, []]));
for (const [a, b] of edges) {
g.get(a)!.push(b);
g.get(b)!.push(a);
}
const vis = new Set<number>();
let ans = 0;
for (const [i] of g) {
if (vis.has(i)) {
continue;
}
const q = [i];
for (const j of q) {
if (vis.has(j)) {
continue;
}
vis.add(j);
q.push(...g.get(j)!);
}
ans++;
}
return ans;
}
|