题目描述
给你一个整数 n
和一个二维数组 requirements
,其中 requirements[i] = [endi, cnti]
表示这个要求中的末尾下标和 逆序对 的数目。
整数数组 nums
中一个下标对 (i, j)
如果满足以下条件,那么它们被称为一个 逆序对 :
i < j
且 nums[i] > nums[j]
请你返回 [0, 1, 2, ..., n - 1]
的 排列 perm
的数目,满足对 所有 的 requirements[i]
都满足 perm[0..endi]
中恰好有 cnti
个逆序对。
由于答案可能会很大,将它对 109 + 7
取余 后返回。
示例 1:
输入:n = 3, requirements = [[2,2],[0,0]]
输出:2
解释:
两个排列为:
[2, 0, 1]
- 前缀
[2, 0, 1]
的逆序对为 (0, 1)
和 (0, 2)
。
- 前缀
[2]
的逆序对数目为 0 个。
[1, 2, 0]
- 前缀
[1, 2, 0]
的逆序对为 (0, 2)
和 (1, 2)
。
- 前缀
[1]
的逆序对数目为 0 个。
示例 2:
输入:n = 3, requirements = [[2,2],[1,1],[0,0]]
输出:1
解释:
唯一满足要求的排列是 [2, 0, 1]
:
- 前缀
[2, 0, 1]
的逆序对为 (0, 1)
和 (0, 2)
。
- 前缀
[2, 0]
的逆序对为 (0, 1)
。
- 前缀
[2]
的逆序对数目为 0 。
示例 3:
输入:n = 2, requirements = [[0,0],[1,0]]
输出:1
解释:
唯一满足要求的排列为 [0, 1]
:
- 前缀
[0]
的逆序对数目为 0 。
- 前缀
[0, 1]
的逆序对为 (0, 1)
。
提示:
2 <= n <= 300
1 <= requirements.length <= n
requirements[i] = [endi, cnti]
0 <= endi <= n - 1
0 <= cnti <= 400
- 输入保证至少有一个
i
满足 endi == n - 1
。
- 输入保证所有的
endi
互不相同。
解法
方法一:动态规划
我们定义 $f[i][j]$ 表示 $[0..i]$ 的排列中,逆序对数量为 $j$ 的排列数。考虑下标为 $i$ 的数 $a_i$ 与前面 $i$ 个数的大小关系。如果 $a_i$ 比前面 $k$ 个数小,那么前面的 $k$ 个数与 $a_i$ 都构成了逆序对,逆序对数量为 $k$。因此,我们可以得到状态转移方程:
$$
f[i][j] = \sum_{k=0}^{\min(i, j)} f[i-1][j-k]
$$
由于题目要求 $[0..\textit{end}_i]$ 的逆序对数量为 $\textit{cnt}_i$,因此,当我们计算 $i = \textit{end}_i$ 时,我们只需要计算 $f[i][\textit{cnt}_i]$ 即可。其余的 $f[i][..]$ 都为 $0$。
时间复杂度 $O(n \times m \times \min(n, m))$,空间复杂度 $O(n \times m)$。其中 $m$ 是逆序对数量的最大值。本题中 $m \le 400$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution:
def numberOfPermutations(self, n: int, requirements: List[List[int]]) -> int:
req = [-1] * n
for end, cnt in requirements:
req[end] = cnt
if req[0] > 0:
return 0
req[0] = 0
mod = 10**9 + 7
m = max(req)
f = [[0] * (m + 1) for _ in range(n)]
f[0][0] = 1
for i in range(1, n):
l, r = 0, m
if req[i] >= 0:
l = r = req[i]
for j in range(l, r + 1):
for k in range(min(i, j) + 1):
f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod
return f[n - 1][req[n - 1]]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public int numberOfPermutations(int n, int[][] requirements) {
int[] req = new int[n];
Arrays.fill(req, -1);
int m = 0;
for (var r : requirements) {
req[r[0]] = r[1];
m = Math.max(m, r[1]);
}
if (req[0] > 0) {
return 0;
}
req[0] = 0;
final int mod = (int) 1e9 + 7;
int[][] f = new int[n][m + 1];
f[0][0] = 1;
for (int i = 1; i < n; ++i) {
int l = 0, r = m;
if (req[i] >= 0) {
l = r = req[i];
}
for (int j = l; j <= r; ++j) {
for (int k = 0; k <= Math.min(i, j); ++k) {
f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod;
}
}
}
return f[n - 1][req[n - 1]];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public:
int numberOfPermutations(int n, vector<vector<int>>& requirements) {
vector<int> req(n, -1);
int m = 0;
for (const auto& r : requirements) {
req[r[0]] = r[1];
m = max(m, r[1]);
}
if (req[0] > 0) {
return 0;
}
req[0] = 0;
const int mod = 1e9 + 7;
vector<vector<int>> f(n, vector<int>(m + 1, 0));
f[0][0] = 1;
for (int i = 1; i < n; ++i) {
int l = 0, r = m;
if (req[i] >= 0) {
l = r = req[i];
}
for (int j = l; j <= r; ++j) {
for (int k = 0; k <= min(i, j); ++k) {
f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod;
}
}
}
return f[n - 1][req[n - 1]];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | func numberOfPermutations(n int, requirements [][]int) int {
req := make([]int, n)
for i := range req {
req[i] = -1
}
for _, r := range requirements {
req[r[0]] = r[1]
}
if req[0] > 0 {
return 0
}
req[0] = 0
m := slices.Max(req)
const mod = int(1e9 + 7)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, m+1)
}
f[0][0] = 1
for i := 1; i < n; i++ {
l, r := 0, m
if req[i] >= 0 {
l, r = req[i], req[i]
}
for j := l; j <= r; j++ {
for k := 0; k <= min(i, j); k++ {
f[i][j] = (f[i][j] + f[i-1][j-k]) % mod
}
}
}
return f[n-1][req[n-1]]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | function numberOfPermutations(n: number, requirements: number[][]): number {
const req: number[] = Array(n).fill(-1);
for (const [end, cnt] of requirements) {
req[end] = cnt;
}
if (req[0] > 0) {
return 0;
}
req[0] = 0;
const m = Math.max(...req);
const mod = 1e9 + 7;
const f = Array.from({ length: n }, () => Array(m + 1).fill(0));
f[0][0] = 1;
for (let i = 1; i < n; ++i) {
let [l, r] = [0, m];
if (req[i] >= 0) {
l = r = req[i];
}
for (let j = l; j <= r; ++j) {
for (let k = 0; k <= Math.min(i, j); ++k) {
f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod;
}
}
}
return f[n - 1][req[n - 1]];
}
|