树
深度优先搜索
广度优先搜索
二叉树
题目描述
给定一棵二叉树的根 root
,其中每个节点有一个值,返回树中 层和最小 的层数(如果相等,返回 最低 的层数)。
注意 树的根节点在第一层,其它任何节点的层数是它到根节点的距离+1。
示例 1:
输入: root = [50,6,2,30,80,7]
输出: 2
解释:
示例 2:
输入: root = [36,17,10,null,null,24]
输出: 3
解释:
示例 3:
输入: root = [5,null,5,null,5]
输出: 1
解释:
提示:
树中节点数量的范围是 [1, 105 ]
。
1 <= Node.val <= 109
解法
方法一:BFS
我们可以使用 BFS,逐层遍历二叉树,记录每一层的节点值之和,找到具有最小节点值之和的层,返回该层的层数。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。
Python3 Java C++ Go TypeScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def minimumLevel ( self , root : Optional [ TreeNode ]) -> int :
q = deque ([ root ])
ans = 0
level , s = 1 , inf
while q :
t = 0
for _ in range ( len ( q )):
node = q . popleft ()
t += node . val
if node . left :
q . append ( node . left )
if node . right :
q . append ( node . right )
if s > t :
s = t
ans = level
level += 1
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int minimumLevel ( TreeNode root ) {
Deque < TreeNode > q = new ArrayDeque <> ();
q . offer ( root );
int ans = 0 ;
long s = Long . MAX_VALUE ;
for ( int level = 1 ; ! q . isEmpty (); ++ level ) {
long t = 0 ;
for ( int m = q . size (); m > 0 ; -- m ) {
TreeNode node = q . poll ();
t += node . val ;
if ( node . left != null ) {
q . offer ( node . left );
}
if ( node . right != null ) {
q . offer ( node . right );
}
}
if ( s > t ) {
s = t ;
ans = level ;
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int minimumLevel ( TreeNode * root ) {
queue < TreeNode *> q {{ root }};
int ans = 0 ;
long long s = 1L L << 60 ;
for ( int level = 1 ; q . size (); ++ level ) {
long long t = 0 ;
for ( int m = q . size (); m ; -- m ) {
TreeNode * node = q . front ();
q . pop ();
t += node -> val ;
if ( node -> left ) {
q . push ( node -> left );
}
if ( node -> right ) {
q . push ( node -> right );
}
}
if ( s > t ) {
s = t ;
ans = level ;
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func minimumLevel ( root * TreeNode ) ( ans int ) {
q := [] * TreeNode { root }
s := math . MaxInt64
for level := 1 ; len ( q ) > 0 ; level ++ {
t := 0
for m := len ( q ); m > 0 ; m -- {
node := q [ 0 ]
q = q [ 1 :]
t += node . Val
if node . Left != nil {
q = append ( q , node . Left )
}
if node . Right != nil {
q = append ( q , node . Right )
}
}
if s > t {
s = t
ans = level
}
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function minimumLevel ( root : TreeNode | null ) : number {
const q : TreeNode [] = [ root ];
let s = Infinity ;
let ans = 0 ;
for ( let level = 1 ; q . length ; ++ level ) {
const qq : TreeNode [] = [];
let t = 0 ;
for ( const { val , left , right } of q ) {
t += val ;
left && qq . push ( left );
right && qq . push ( right );
}
if ( s > t ) {
s = t ;
ans = level ;
}
q . splice ( 0 , q . length , ... qq );
}
return ans ;
}
GitHub