题目描述
给你一个下标从 0 开始的整数矩阵 grid
和一个整数 k
。
返回包含 grid
左上角元素、元素和小于或等于 k
的 子矩阵的数目。
示例 1:
输入:grid = [[7,6,3],[6,6,1]], k = 18
输出:4
解释:如上图所示,只有 4 个子矩阵满足:包含 grid 的左上角元素,并且元素和小于或等于 18 。
示例 2:
输入:grid = [[7,2,9],[1,5,0],[2,6,6]], k = 20
输出:6
解释:如上图所示,只有 6 个子矩阵满足:包含 grid 的左上角元素,并且元素和小于或等于 20 。
提示:
m == grid.length
n == grid[i].length
1 <= n, m <= 1000
0 <= grid[i][j] <= 1000
1 <= k <= 109
解法
方法一:二维前缀和
题目实际上求的是二维矩阵有多少个和小于等于 $k$ 的前缀子矩阵。
二维前缀和的计算公式为:
$$
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + x
$$
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是矩阵的行数和列数。
| class Solution:
def countSubmatrices(self, grid: List[List[int]], k: int) -> int:
s = [[0] * (len(grid[0]) + 1) for _ in range(len(grid) + 1)]
ans = 0
for i, row in enumerate(grid, 1):
for j, x in enumerate(row, 1):
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + x
ans += s[i][j] <= k
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution {
public int countSubmatrices(int[][] grid, int k) {
int m = grid.length, n = grid[0].length;
int[][] s = new int[m + 1][n + 1];
int ans = 0;
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
if (s[i][j] <= k) {
++ans;
}
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution {
public:
int countSubmatrices(vector<vector<int>>& grid, int k) {
int m = grid.size(), n = grid[0].size();
int s[m + 1][n + 1];
memset(s, 0, sizeof(s));
int ans = 0;
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
if (s[i][j] <= k) {
++ans;
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | func countSubmatrices(grid [][]int, k int) (ans int) {
s := make([][]int, len(grid)+1)
for i := range s {
s[i] = make([]int, len(grid[0])+1)
}
for i, row := range grid {
for j, x := range row {
s[i+1][j+1] = s[i+1][j] + s[i][j+1] - s[i][j] + x
if s[i+1][j+1] <= k {
ans++
}
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | function countSubmatrices(grid: number[][], k: number): number {
const m = grid.length;
const n = grid[0].length;
const s: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
let ans: number = 0;
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
if (s[i][j] <= k) {
++ans;
}
}
}
return ans;
}
|