题目描述
给你一个整数 k
和一个整数 x
。整数 num
的价值是它的二进制表示中在 x
,2x
,3x
等位置处 设置位 的数目(从最低有效位开始)。下面的表格包含了如何计算价值的例子。
x |
num |
Binary Representation |
Price |
1 |
13 |
000001101 |
3 |
2 |
13 |
000001101 |
1 |
2 |
233 |
011101001 |
3 |
3 |
13 |
000001101 |
1 |
3 |
362 |
101101010 |
2 |
num
的 累加价值 是从 1
到 num
的数字的 总 价值。如果 num
的累加价值小于或等于 k
则被认为是 廉价 的。
请你返回 最大 的廉价数字。
示例 1:
输入:k = 9, x = 1
输出:6
解释:由下表所示,6 是最大的廉价数字。
x |
num |
Binary Representation |
Price |
Accumulated Price |
1 |
1 |
001 |
1 |
1 |
1 |
2 |
010 |
1 |
2 |
1 |
3 |
011 |
2 |
4 |
1 |
4 |
100 |
1 |
5 |
1 |
5 |
101 |
2 |
7 |
1 |
6 |
110 |
2 |
9 |
1 |
7 |
111 |
3 |
12 |
示例 2:
输入:k = 7, x = 2
输出:9
解释:由下表所示,9 是最大的廉价数字。
x |
num |
Binary Representation |
Price |
Accumulated Price |
2 |
1 |
0001 |
0 |
0 |
2 |
2 |
0010 |
1 |
1 |
2 |
3 |
0011 |
1 |
2 |
2 |
4 |
0100 |
0 |
2 |
2 |
5 |
0101 |
0 |
2 |
2 |
6 |
0110 |
1 |
3 |
2 |
7 |
0111 |
1 |
4 |
2 |
8 |
1000 |
1 |
5 |
2 |
9 |
1001 |
1 |
6 |
2 |
10 |
1010 |
2 |
8 |
提示:
1 <= k <= 1015
1 <= x <= 8
解法
方法一:二分查找 + 数位 DP
我们注意到,如果 $\textit{num}$ 增大,数字 $1$ 到 $\textit{num}$ 的总价值也会增大。因此,我们可以使用二分查找的方法找到最大的廉价数字。
我们定义二分查找的左边界 $l = 1$,由于每 $2^x + 1$ 个数中至少有一个数字是有价值的,而总价值不超过 $10^15$,因此我们可以设定二分查找的右边界 $r = 10^{18}$。
接下来,我们进行二分查找,对于每一个 $\textit{mid}$,我们使用数位 DP 的方法计算出 $1$ 到 $\textit{mid}$ 的总价值,如果总价值不超过 $k$,则说明 $\textit{mid}$ 是一个廉价数字,我们将左边界 $l$ 更新为 $\textit{mid}$,否则我们将右边界 $r$ 更新为 $\textit{mid} - 1$。
最后,我们返回左边界 $l$ 即可。
时间复杂度 $O(\log^2 k)$,空间复杂度 $O(\log k)$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | class Solution:
def findMaximumNumber(self, k: int, x: int) -> int:
@cache
def dfs(pos, limit, cnt):
if pos == 0:
return cnt
ans = 0
up = (self.num >> (pos - 1) & 1) if limit else 1
for i in range(up + 1):
ans += dfs(pos - 1, limit and i == up, cnt + (i == 1 and pos % x == 0))
return ans
l, r = 1, 10**18
while l < r:
mid = (l + r + 1) >> 1
self.num = mid
v = dfs(mid.bit_length(), True, 0)
dfs.cache_clear()
if v <= k:
l = mid
else:
r = mid - 1
return l
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | class Solution {
private int x;
private long num;
private Long[][] f;
public long findMaximumNumber(long k, int x) {
this.x = x;
long l = 1, r = (long) 1e17;
while (l < r) {
long mid = (l + r + 1) >>> 1;
num = mid;
f = new Long[65][65];
int pos = 64 - Long.numberOfLeadingZeros(mid);
if (dfs(pos, 0, true) <= k) {
l = mid;
} else {
r = mid - 1;
}
}
return l;
}
private long dfs(int pos, int cnt, boolean limit) {
if (pos == 0) {
return cnt;
}
if (!limit && f[pos][cnt] != null) {
return f[pos][cnt];
}
long ans = 0;
int up = limit ? (int) (num >> (pos - 1) & 1) : 1;
for (int i = 0; i <= up; ++i) {
ans += dfs(pos - 1, cnt + (i == 1 && pos % x == 0 ? 1 : 0), limit && i == up);
}
if (!limit) {
f[pos][cnt] = ans;
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 | class Solution {
public:
long long findMaximumNumber(long long k, int x) {
using ll = long long;
ll l = 1, r = 1e17;
ll num = 0;
ll f[65][65];
auto dfs = [&](this auto&& dfs, int pos, int cnt, bool limit) -> ll {
if (pos == 0) {
return cnt;
}
if (!limit && f[pos][cnt] != -1) {
return f[pos][cnt];
}
int up = limit ? num >> (pos - 1) & 1 : 1;
ll ans = 0;
for (int i = 0; i <= up; ++i) {
ans += dfs(pos - 1, cnt + (i == 1 && pos % x == 0), limit && i == up);
}
if (!limit) {
f[pos][cnt] = ans;
}
return ans;
};
while (l < r) {
ll mid = (l + r + 1) >> 1;
num = mid;
memset(f, -1, sizeof(f));
int pos = 64 - __builtin_clzll(mid);
if (dfs(pos, 0, true) <= k) {
l = mid;
} else {
r = mid - 1;
}
}
return l;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 | func findMaximumNumber(k int64, x int) int64 {
var l, r int64 = 1, 1e17
var num int64
var f [65][65]int64
var dfs func(pos, cnt int, limit bool) int64
dfs = func(pos, cnt int, limit bool) int64 {
if pos == 0 {
return int64(cnt)
}
if !limit && f[pos][cnt] != -1 {
return f[pos][cnt]
}
var ans int64
up := 1
if limit {
up = int(num >> (pos - 1) & 1)
}
for i := 0; i <= up; i++ {
v := cnt
if i == 1 && pos%x == 0 {
v++
}
ans += dfs(pos-1, v, limit && i == up)
}
if !limit {
f[pos][cnt] = ans
}
return ans
}
for l < r {
mid := (l + r + 1) >> 1
num = mid
m := bits.Len(uint(num))
for i := range f {
for j := range f[i] {
f[i][j] = -1
}
}
if dfs(m, 0, true) <= k {
l = mid
} else {
r = mid - 1
}
}
return l
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 | function findMaximumNumber(k: number, x: number): number {
let [l, r] = [1n, 10n ** 17n];
let num: bigint;
const f: bigint[][] = Array.from({ length: 65 }, () => Array(65).fill(-1n));
const dfs = (pos: number, cnt: number, limit: boolean): bigint => {
if (pos === 0) {
return BigInt(cnt);
}
if (!limit && f[pos][cnt] !== -1n) {
return f[pos][cnt];
}
let ans: bigint = 0n;
let up: number = 1;
if (limit) {
up = Number((num >> BigInt(pos - 1)) & 1n);
}
for (let i = 0; i <= up; i++) {
let v: number = cnt;
if (i === 1 && pos % x === 0) {
v++;
}
ans += dfs(pos - 1, v, limit && i === up);
}
if (!limit) {
f[pos][cnt] = ans;
}
return ans;
};
while (l < r) {
let mid: bigint = (l + r + 1n) >> 1n;
num = mid;
let m: number = num.toString(2).length;
for (let i = 0; i < f.length; i++) {
f[i].fill(-1n);
}
if (dfs(m, 0, true) <= BigInt(k)) {
l = mid;
} else {
r = mid - 1n;
}
}
return Number(l);
}
|