题目描述
给定一个二维整数数组 edges
,表示一个有 n
个节点的树,节点编号从 0
到 n - 1
,以节点 0
为根,其中 edges[i] = [ui, vi]
表示节点 vi
和 ui
之间存在一条边。
还给定一个 下标从 0 开始,大小为 n
的整数数组 colors
,其中 colors[i]
表示节点 i
分配的颜色。
我们希望找到一个节点 v
,使得 v
的子树中的每个节点具有 相同 的颜色。
返回 具有 尽可能多 节点 且 符合上述要求的子树大小。
示例 1:
输入:edges = [[0,1],[0,2],[0,3]], colors = [1,1,2,3]
输出:1
解释:每种颜色分别对应为:1 -> 红色,2 -> 绿色,3 -> 蓝色。我们可以看到以节点 0 为根的子树具有不同颜色的子节点。任何其他子树都是相同颜色的,并且大小为 1。因此,我们返回 1。
示例 2:
输入:edges = [[0,1],[0,2],[0,3]], colors = [1,1,1,1]
输出:4
解释:整个树具有相同的颜色,以节点 0 为根的子树具有节点数最多,为 4。因此,我们返回 4。
示例 3:
输入:edges = [[0,1],[0,2],[2,3],[2,4]], colors = [1,2,3,3,3]
输出:3
解释:每种颜色分别对应为:1 -> 红色,2 -> 绿色,3 -> 蓝色。我们可以看到以节点 0 为根的子树有不同颜色的子节点。其他任何子树都是相同颜色的,但以节点 2 为根的子树的大小为 3,这是最大的。因此,我们返回 3。
提示:
n == edges.length + 1
1 <= n <= 5 * 104
edges[i] == [ui, vi]
0 <= ui, vi < n
colors.length == n
1 <= colors[i] <= 105
- 输入被生成,使得由
edges
表示的图是一棵树。
解法
方法一:DFS
我们先根据题目给定的边的信息,构建一个邻接表 $g$,其中 $g[a]$ 表示节点 $a$ 的所有相邻节点。然后我们创建一个长度为 $n$ 的数组 $size$,其中 $size[a]$ 表示以节点 $a$ 为根的子树的节点数。
接下来,我们设计一个函数 $dfs(a, fa)$,它将返回以节点 $a$ 为根的子树是否满足题目要求。函数 $dfs(a, fa)$ 的执行过程如下:
- 首先,我们用一个变量 $ok$ 记录以节点 $a$ 为根的子树是否满足题目要求,初始时 $ok$ 为 $true$。
- 接着,我们遍历节点 $a$ 的所有相邻节点 $b$,如果 $b$ 不是 $a$ 的父节点 $fa$,那么我们递归调用 $dfs(b, a)$,并将返回值保存到变量 $t$ 中,并且更新 $ok$ 为 $ok$ 与 $colors[a] = colors[b] \land t$ 的值,其中 $\land$ 表示逻辑与运算。然后,我们更新 $size[a] = size[a] + size[b]$。
- 然后,我们判断 $ok$ 的值,如果 $ok$ 为 $true$,那么我们更新答案 $ans = \max(ans, size[a])$。
- 最后,我们返回 $ok$ 的值。
我们调用 $dfs(0, -1)$,其中 $0$ 表示根节点的编号,$-1$ 表示根节点没有父节点。最终的答案即为 $ans$。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是节点的数量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | class Solution:
def maximumSubtreeSize(self, edges: List[List[int]], colors: List[int]) -> int:
def dfs(a: int, fa: int) -> bool:
ok = True
for b in g[a]:
if b != fa:
t = dfs(b, a)
ok = ok and colors[a] == colors[b] and t
size[a] += size[b]
if ok:
nonlocal ans
ans = max(ans, size[a])
return ok
n = len(edges) + 1
g = [[] for _ in range(n)]
size = [1] * n
for a, b in edges:
g[a].append(b)
g[b].append(a)
ans = 0
dfs(0, -1)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 | class Solution {
private List<Integer>[] g;
private int[] colors;
private int[] size;
private int ans;
public int maximumSubtreeSize(int[][] edges, int[] colors) {
int n = edges.length + 1;
g = new List[n];
size = new int[n];
this.colors = colors;
Arrays.fill(size, 1);
Arrays.setAll(g, i -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
dfs(0, -1);
return ans;
}
private boolean dfs(int a, int fa) {
boolean ok = true;
for (int b : g[a]) {
if (b != fa) {
boolean t = dfs(b, a);
ok = ok && colors[a] == colors[b] && t;
size[a] += size[b];
}
}
if (ok) {
ans = Math.max(ans, size[a]);
}
return ok;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public:
int maximumSubtreeSize(vector<vector<int>>& edges, vector<int>& colors) {
int n = edges.size() + 1;
vector<int> g[n];
vector<int> size(n, 1);
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].push_back(b);
g[b].push_back(a);
}
int ans = 0;
function<bool(int, int)> dfs = [&](int a, int fa) {
bool ok = true;
for (int b : g[a]) {
if (b != fa) {
bool t = dfs(b, a);
ok = ok && colors[a] == colors[b] && t;
size[a] += size[b];
}
}
if (ok) {
ans = max(ans, size[a]);
}
return ok;
};
dfs(0, -1);
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | func maximumSubtreeSize(edges [][]int, colors []int) (ans int) {
n := len(edges) + 1
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
size := make([]int, n)
var dfs func(int, int) bool
dfs = func(a, fa int) bool {
size[a] = 1
ok := true
for _, b := range g[a] {
if b != fa {
t := dfs(b, a)
ok = ok && t && colors[a] == colors[b]
size[a] += size[b]
}
}
if ok {
ans = max(ans, size[a])
}
return ok
}
dfs(0, -1)
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | function maximumSubtreeSize(edges: number[][], colors: number[]): number {
const n = edges.length + 1;
const g: number[][] = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
const size: number[] = Array(n).fill(1);
let ans = 0;
const dfs = (a: number, fa: number): boolean => {
let ok = true;
for (const b of g[a]) {
if (b !== fa) {
const t = dfs(b, a);
ok = ok && t && colors[a] === colors[b];
size[a] += size[b];
}
}
if (ok) {
ans = Math.max(ans, size[a]);
}
return ok;
};
dfs(0, -1);
return ans;
}
|