题目描述
给你一个下标从 0 开始的 正整数 数组 nums
和一个 正整数 limit
。
在一次操作中,你可以选择任意两个下标 i
和 j
,如果 满足 |nums[i] - nums[j]| <= limit
,则交换 nums[i]
和 nums[j]
。
返回执行任意次操作后能得到的 字典序最小的数组 。
如果在数组 a
和数组 b
第一个不同的位置上,数组 a
中的对应元素比数组 b
中的对应元素的字典序更小,则认为数组 a
就比数组 b
字典序更小。例如,数组 [2,10,3]
比数组 [10,2,3]
字典序更小,下标 0
处是两个数组第一个不同的位置,且 2 < 10
。
示例 1:
输入:nums = [1,5,3,9,8], limit = 2
输出:[1,3,5,8,9]
解释:执行 2 次操作:
- 交换 nums[1] 和 nums[2] 。数组变为 [1,3,5,9,8] 。
- 交换 nums[3] 和 nums[4] 。数组变为 [1,3,5,8,9] 。
即便执行更多次操作,也无法得到字典序更小的数组。
注意,执行不同的操作也可能会得到相同的结果。
示例 2:
输入:nums = [1,7,6,18,2,1], limit = 3
输出:[1,6,7,18,1,2]
解释:执行 3 次操作:
- 交换 nums[1] 和 nums[2] 。数组变为 [1,6,7,18,2,1] 。
- 交换 nums[0] 和 nums[4] 。数组变为 [2,6,7,18,1,1] 。
- 交换 nums[0] 和 nums[5] 。数组变为 [1,6,7,18,1,2] 。
即便执行更多次操作,也无法得到字典序更小的数组。
示例 3:
输入:nums = [1,7,28,19,10], limit = 3
输出:[1,7,28,19,10]
解释:[1,7,28,19,10] 是字典序最小的数组,因为不管怎么选择下标都无法执行操作。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 109
1 <= limit <= 109
解法
方法一
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | class Solution:
def lexicographicallySmallestArray(self, nums: List[int], limit: int) -> List[int]:
n = len(nums)
arr = sorted(zip(nums, range(n)))
ans = [0] * n
i = 0
while i < n:
j = i + 1
while j < n and arr[j][0] - arr[j - 1][0] <= limit:
j += 1
idx = sorted(k for _, k in arr[i:j])
for k, (x, _) in zip(idx, arr[i:j]):
ans[k] = x
i = j
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | class Solution {
public int[] lexicographicallySmallestArray(int[] nums, int limit) {
int n = nums.length;
Integer[] idx = new Integer[n];
for (int i = 0; i < n; ++i) {
idx[i] = i;
}
Arrays.sort(idx, (i, j) -> nums[i] - nums[j]);
int[] ans = new int[n];
for (int i = 0; i < n;) {
int j = i + 1;
while (j < n && nums[idx[j]] - nums[idx[j - 1]] <= limit) {
++j;
}
Integer[] t = Arrays.copyOfRange(idx, i, j);
Arrays.sort(t, (x, y) -> x - y);
for (int k = i; k < j; ++k) {
ans[t[k - i]] = nums[idx[k]];
}
i = j;
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | class Solution {
public:
vector<int> lexicographicallySmallestArray(vector<int>& nums, int limit) {
int n = nums.size();
vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int i, int j) {
return nums[i] < nums[j];
});
vector<int> ans(n);
for (int i = 0; i < n;) {
int j = i + 1;
while (j < n && nums[idx[j]] - nums[idx[j - 1]] <= limit) {
++j;
}
vector<int> t(idx.begin() + i, idx.begin() + j);
sort(t.begin(), t.end());
for (int k = i; k < j; ++k) {
ans[t[k - i]] = nums[idx[k]];
}
i = j;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | func lexicographicallySmallestArray(nums []int, limit int) []int {
n := len(nums)
idx := make([]int, n)
for i := range idx {
idx[i] = i
}
slices.SortFunc(idx, func(i, j int) int { return nums[i] - nums[j] })
ans := make([]int, n)
for i := 0; i < n; {
j := i + 1
for j < n && nums[idx[j]]-nums[idx[j-1]] <= limit {
j++
}
t := slices.Clone(idx[i:j])
slices.Sort(t)
for k := i; k < j; k++ {
ans[t[k-i]] = nums[idx[k]]
}
i = j
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | function lexicographicallySmallestArray(nums: number[], limit: number): number[] {
const n: number = nums.length;
const idx: number[] = Array.from({ length: n }, (_, i) => i);
idx.sort((i, j) => nums[i] - nums[j]);
const ans: number[] = Array(n).fill(0);
for (let i = 0; i < n; ) {
let j = i + 1;
while (j < n && nums[idx[j]] - nums[idx[j - 1]] <= limit) {
j++;
}
const t: number[] = idx.slice(i, j).sort((a, b) => a - b);
for (let k: number = i; k < j; k++) {
ans[t[k - i]] = nums[idx[k]];
}
i = j;
}
return ans;
}
|