题目描述
给你一个下标从 0 开始的整数数组 nums
。如果一对整数 x
和 y
满足以下条件,则称其为 强数对 :
你需要从 nums
中选出两个整数,且满足:这两个整数可以形成一个强数对,并且它们的按位异或(XOR
)值是在该数组所有强数对中的 最大值 。
返回数组 nums
所有可能的强数对中的 最大 异或值。
注意,你可以选择同一个整数两次来形成一个强数对。
示例 1:
输入:nums = [1,2,3,4,5]
输出:7
解释:数组 nums 中有 11 个强数对:(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5) 和 (5, 5) 。
这些强数对中的最大异或值是 3 XOR 4 = 7 。
示例 2:
输入:nums = [10,100]
输出:0
解释:数组 nums 中有 2 个强数对:(10, 10) 和 (100, 100) 。
这些强数对中的最大异或值是 10 XOR 10 = 0 ,数对 (100, 100) 的异或值也是 100 XOR 100 = 0 。
示例 3:
输入:nums = [5,6,25,30]
输出:7
解释:数组 nums 中有 6 个强数对:(5, 5), (5, 6), (6, 6), (25, 25), (25, 30) 和 (30, 30) 。
这些强数对中的最大异或值是 25 XOR 30 = 7 ;另一个异或值非零的数对是 (5, 6) ,其异或值是 5 XOR 6 = 3 。
提示:
1 <= nums.length <= 50
1 <= nums[i] <= 100
解法
方法一:枚举
我们可以枚举数组中的每一个数对 $(x, y)$,如果满足 $|x - y| \leq \min(x, y)$,那么这个数对就是一个强数对,我们可以计算这个数对的异或值,并更新答案。
时间复杂度 $O(n^2)$,其中 $n$ 是数组 $nums$ 的长度。空间复杂度 $O(1)$。
| class Solution:
def maximumStrongPairXor(self, nums: List[int]) -> int:
return max(x ^ y for x in nums for y in nums if abs(x - y) <= min(x, y))
|
1
2
3
4
5
6
7
8
9
10
11
12
13 | class Solution {
public int maximumStrongPairXor(int[] nums) {
int ans = 0;
for (int x : nums) {
for (int y : nums) {
if (Math.abs(x - y) <= Math.min(x, y)) {
ans = Math.max(ans, x ^ y);
}
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution {
public:
int maximumStrongPairXor(vector<int>& nums) {
int ans = 0;
for (int x : nums) {
for (int y : nums) {
if (abs(x - y) <= min(x, y)) {
ans = max(ans, x ^ y);
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | func maximumStrongPairXor(nums []int) (ans int) {
for _, x := range nums {
for _, y := range nums {
if abs(x-y) <= min(x, y) {
ans = max(ans, x^y)
}
}
}
return
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
| function maximumStrongPairXor(nums: number[]): number {
let ans = 0;
for (const x of nums) {
for (const y of nums) {
if (Math.abs(x - y) <= Math.min(x, y)) {
ans = Math.max(ans, x ^ y);
}
}
}
return ans;
}
|
方法二:排序 + 0-1 字典树
观察不等式 $|x - y| \leq \min(x, y)$,其中涉及到绝对值以及最小值,我们不妨假设 $x \leq y$,则有 $y - x \leq x$,即 $y \leq 2x$。我们可以从小到大枚举 $y$,那么 $x$ 必须满足不等式 $y \leq 2x$。
因此,我们对数组 $nums$ 进行排序,然后从小到大枚举 $y$,利用双指针维护一个窗口,使得窗口内的元素 $x$ 满足不等式 $y \leq 2x$。我们可以使用 0-1 字典树来维护窗口内的元素,这样我们就可以在 $O(1)$ 的时间内找到窗口内的最大异或值。每一次我们将 $y$ 加入到字典树中,同时将窗口左端点不满足不等式的元素移除,这样就可以保证窗口内的元素满足不等式 $y \leq 2x$。然后从字典树中查询最大异或值,更新答案。
时间复杂度 $O(n \times \log M)$,空间复杂度 $O(n \times \log M)$。其中 $n$ 是数组 $nums$ 的长度,而 $M$ 是数组 $nums$ 中的最大值。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 | class Trie:
__slots__ = ("children", "cnt")
def __init__(self):
self.children: List[Trie | None] = [None, None]
self.cnt = 0
def insert(self, x: int):
node = self
for i in range(7, -1, -1):
v = x >> i & 1
if node.children[v] is None:
node.children[v] = Trie()
node = node.children[v]
node.cnt += 1
def search(self, x: int) -> int:
node = self
ans = 0
for i in range(7, -1, -1):
v = x >> i & 1
if node.children[v ^ 1] and node.children[v ^ 1].cnt:
ans |= 1 << i
node = node.children[v ^ 1]
else:
node = node.children[v]
return ans
def remove(self, x: int):
node = self
for i in range(7, -1, -1):
v = x >> i & 1
node = node.children[v]
node.cnt -= 1
class Solution:
def maximumStrongPairXor(self, nums: List[int]) -> int:
nums.sort()
tree = Trie()
ans = i = 0
for y in nums:
tree.insert(y)
while y > nums[i] * 2:
tree.remove(nums[i])
i += 1
ans = max(ans, tree.search(y))
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 | class Trie {
private Trie[] children = new Trie[2];
private int cnt = 0;
public Trie() {
}
public void insert(int x) {
Trie node = this;
for (int i = 7; i >= 0; --i) {
int v = x >> i & 1;
if (node.children[v] == null) {
node.children[v] = new Trie();
}
node = node.children[v];
++node.cnt;
}
}
public int search(int x) {
Trie node = this;
int ans = 0;
for (int i = 7; i >= 0; --i) {
int v = x >> i & 1;
if (node.children[v ^ 1] != null && node.children[v ^ 1].cnt > 0) {
ans |= 1 << i;
node = node.children[v ^ 1];
} else {
node = node.children[v];
}
}
return ans;
}
public void remove(int x) {
Trie node = this;
for (int i = 7; i >= 0; --i) {
int v = x >> i & 1;
node = node.children[v];
--node.cnt;
}
}
}
class Solution {
public int maximumStrongPairXor(int[] nums) {
Arrays.sort(nums);
Trie tree = new Trie();
int ans = 0, i = 0;
for (int y : nums) {
tree.insert(y);
while (y > nums[i] * 2) {
tree.remove(nums[i++]);
}
ans = Math.max(ans, tree.search(y));
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 | class Trie {
public:
Trie* children[2];
int cnt;
Trie()
: cnt(0) {
children[0] = nullptr;
children[1] = nullptr;
}
void insert(int x) {
Trie* node = this;
for (int i = 7; ~i; --i) {
int v = (x >> i) & 1;
if (node->children[v] == nullptr) {
node->children[v] = new Trie();
}
node = node->children[v];
++node->cnt;
}
}
int search(int x) {
Trie* node = this;
int ans = 0;
for (int i = 7; ~i; --i) {
int v = (x >> i) & 1;
if (node->children[v ^ 1] != nullptr && node->children[v ^ 1]->cnt > 0) {
ans |= 1 << i;
node = node->children[v ^ 1];
} else {
node = node->children[v];
}
}
return ans;
}
void remove(int x) {
Trie* node = this;
for (int i = 7; ~i; --i) {
int v = (x >> i) & 1;
node = node->children[v];
--node->cnt;
}
}
};
class Solution {
public:
int maximumStrongPairXor(vector<int>& nums) {
sort(nums.begin(), nums.end());
Trie* tree = new Trie();
int ans = 0, i = 0;
for (int y : nums) {
tree->insert(y);
while (y > nums[i] * 2) {
tree->remove(nums[i++]);
}
ans = max(ans, tree->search(y));
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 | type Trie struct {
children [2]*Trie
cnt int
}
func newTrie() *Trie {
return &Trie{}
}
func (t *Trie) insert(x int) {
node := t
for i := 7; i >= 0; i-- {
v := (x >> uint(i)) & 1
if node.children[v] == nil {
node.children[v] = newTrie()
}
node = node.children[v]
node.cnt++
}
}
func (t *Trie) search(x int) int {
node := t
ans := 0
for i := 7; i >= 0; i-- {
v := (x >> uint(i)) & 1
if node.children[v^1] != nil && node.children[v^1].cnt > 0 {
ans |= 1 << uint(i)
node = node.children[v^1]
} else {
node = node.children[v]
}
}
return ans
}
func (t *Trie) remove(x int) {
node := t
for i := 7; i >= 0; i-- {
v := (x >> uint(i)) & 1
node = node.children[v]
node.cnt--
}
}
func maximumStrongPairXor(nums []int) (ans int) {
sort.Ints(nums)
tree := newTrie()
i := 0
for _, y := range nums {
tree.insert(y)
for ; y > nums[i]*2; i++ {
tree.remove(nums[i])
}
ans = max(ans, tree.search(y))
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 | class Trie {
children: (Trie | null)[];
cnt: number;
constructor() {
this.children = [null, null];
this.cnt = 0;
}
insert(x: number): void {
let node: Trie | null = this;
for (let i = 7; i >= 0; i--) {
const v = (x >> i) & 1;
if (node.children[v] === null) {
node.children[v] = new Trie();
}
node = node.children[v] as Trie;
node.cnt++;
}
}
search(x: number): number {
let node: Trie | null = this;
let ans = 0;
for (let i = 7; i >= 0; i--) {
const v = (x >> i) & 1;
if (node.children[v ^ 1] !== null && (node.children[v ^ 1] as Trie).cnt > 0) {
ans |= 1 << i;
node = node.children[v ^ 1] as Trie;
} else {
node = node.children[v] as Trie;
}
}
return ans;
}
remove(x: number): void {
let node: Trie | null = this;
for (let i = 7; i >= 0; i--) {
const v = (x >> i) & 1;
node = node.children[v] as Trie;
node.cnt--;
}
}
}
function maximumStrongPairXor(nums: number[]): number {
nums.sort((a, b) => a - b);
const tree = new Trie();
let ans = 0;
let i = 0;
for (const y of nums) {
tree.insert(y);
while (y > nums[i] * 2) {
tree.remove(nums[i++]);
}
ans = Math.max(ans, tree.search(y));
}
return ans;
}
|