题目描述
给你一个下标从 0 开始的整数数组 nums
。
如果下标三元组 (i, j, k)
满足下述全部条件,则认为它是一个 山形三元组 :
i < j < k
nums[i] < nums[j]
且 nums[k] < nums[j]
请你找出 nums
中 元素和最小 的山形三元组,并返回其 元素和 。如果不存在满足条件的三元组,返回 -1
。
示例 1:
输入:nums = [8,6,1,5,3]
输出:9
解释:三元组 (2, 3, 4) 是一个元素和等于 9 的山形三元组,因为:
- 2 < 3 < 4
- nums[2] < nums[3] 且 nums[4] < nums[3]
这个三元组的元素和等于 nums[2] + nums[3] + nums[4] = 9 。可以证明不存在元素和小于 9 的山形三元组。
示例 2:
输入:nums = [5,4,8,7,10,2]
输出:13
解释:三元组 (1, 3, 5) 是一个元素和等于 13 的山形三元组,因为:
- 1 < 3 < 5
- nums[1] < nums[3] 且 nums[5] < nums[3]
这个三元组的元素和等于 nums[1] + nums[3] + nums[5] = 13 。可以证明不存在元素和小于 13 的山形三元组。
示例 3:
输入:nums = [6,5,4,3,4,5]
输出:-1
解释:可以证明 nums 中不存在山形三元组。
提示:
3 <= nums.length <= 50
1 <= nums[i] <= 50
解法
方法一:预处理 + 枚举
我们可以预处理出每个位置右侧的最小值,记录在数组 $right[i]$ 中,即 $right[i]$ 表示 $nums[i+1..n-1]$ 中的最小值。
接下来,我们从左到右枚举山形三元组的中间元素 $nums[i]$,用一个变量 $left$ 表示 $nums[0..i-1]$ 中的最小值,用一个变量 $ans$ 表示当前找到的最小元素和。对于每个 $i$,我们需要找到满足 $left < nums[i]$ 且 $right[i+1] < nums[i]$ 的元素 $nums[i]$,并更新 $ans$。
最后,如果 $ans$ 仍然为初始值,则说明不存在山形三元组,返回 $-1$。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组长度。
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution:
def minimumSum(self, nums: List[int]) -> int:
n = len(nums)
right = [inf] * (n + 1)
for i in range(n - 1, -1, -1):
right[i] = min(right[i + 1], nums[i])
ans = left = inf
for i, x in enumerate(nums):
if left < x and right[i + 1] < x:
ans = min(ans, left + x + right[i + 1])
left = min(left, x)
return -1 if ans == inf else ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public int minimumSum(int[] nums) {
int n = nums.length;
int[] right = new int[n + 1];
final int inf = 1 << 30;
right[n] = inf;
for (int i = n - 1; i >= 0; --i) {
right[i] = Math.min(right[i + 1], nums[i]);
}
int ans = inf, left = inf;
for (int i = 0; i < n; ++i) {
if (left < nums[i] && right[i + 1] < nums[i]) {
ans = Math.min(ans, left + nums[i] + right[i + 1]);
}
left = Math.min(left, nums[i]);
}
return ans == inf ? -1 : ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution {
public:
int minimumSum(vector<int>& nums) {
int n = nums.size();
const int inf = 1 << 30;
int right[n + 1];
right[n] = inf;
for (int i = n - 1; ~i; --i) {
right[i] = min(right[i + 1], nums[i]);
}
int ans = inf, left = inf;
for (int i = 0; i < n; ++i) {
if (left < nums[i] && right[i + 1] < nums[i]) {
ans = min(ans, left + nums[i] + right[i + 1]);
}
left = min(left, nums[i]);
}
return ans == inf ? -1 : ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | func minimumSum(nums []int) int {
n := len(nums)
const inf = 1 << 30
right := make([]int, n+1)
right[n] = inf
for i := n - 1; i >= 0; i-- {
right[i] = min(right[i+1], nums[i])
}
ans, left := inf, inf
for i, x := range nums {
if left < x && right[i+1] < x {
ans = min(ans, left+x+right[i+1])
}
left = min(left, x)
}
if ans == inf {
return -1
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | function minimumSum(nums: number[]): number {
const n = nums.length;
const right: number[] = Array(n + 1).fill(Infinity);
for (let i = n - 1; ~i; --i) {
right[i] = Math.min(right[i + 1], nums[i]);
}
let [ans, left] = [Infinity, Infinity];
for (let i = 0; i < n; ++i) {
if (left < nums[i] && right[i + 1] < nums[i]) {
ans = Math.min(ans, left + nums[i] + right[i + 1]);
}
left = Math.min(left, nums[i]);
}
return ans === Infinity ? -1 : ans;
}
|