跳转至

2875. 无限数组的最短子数组

题目描述

给你一个下标从 0 开始的数组 nums 和一个整数 target

下标从 0 开始的数组 infinite_nums 是通过无限地将 nums 的元素追加到自己之后生成的。

请你从 infinite_nums 中找出满足 元素和 等于 target最短 子数组,并返回该子数组的长度。如果不存在满足条件的子数组,返回 -1

 

示例 1:

输入:nums = [1,2,3], target = 5
输出:2
解释:在这个例子中 infinite_nums = [1,2,3,1,2,3,1,2,...] 。
区间 [1,2] 内的子数组的元素和等于 target = 5 ,且长度 length = 2 。
可以证明,当元素和等于目标值 target = 5 时,2 是子数组的最短长度。

示例 2:

输入:nums = [1,1,1,2,3], target = 4
输出:2
解释:在这个例子中 infinite_nums = [1,1,1,2,3,1,1,1,2,3,1,1,...].
区间 [4,5] 内的子数组的元素和等于 target = 4 ,且长度 length = 2 。
可以证明,当元素和等于目标值 target = 4 时,2 是子数组的最短长度。

示例 3:

输入:nums = [2,4,6,8], target = 3
输出:-1
解释:在这个例子中 infinite_nums = [2,4,6,8,2,4,6,8,...] 。
可以证明,不存在元素和等于目标值 target = 3 的子数组。

 

提示:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105
  • 1 <= target <= 109

解法

方法一:前缀和 + 哈希表

我们先算出数组 $nums$ 的元素总和,记为 $s$。

如果 $target \gt s$,那么我们可以将 $target$ 减去 $\lfloor \frac{target}{s} \rfloor \times s$,这样就可以将 $target$ 减小到 $[0, s)$ 的范围内。那么此时子数组的长度为 $a = \lfloor \frac{target}{s} \rfloor \times n$,其中 $n$ 是数组 $nums$ 的长度。

接下来,我们只需要在数组 $nums$ 中,找出长度最短的且元素和等于 $target$ 的子数组,或者长度最短的且前缀和加上后缀和等于 $target$,即子数组元素和等于 $s - target$ 的子数组,记长度为 $b$。我们可以通过前缀和加哈希表的方法,找出这样的子数组。

如果找到了这样的子数组,那么最终的答案就是 $a + b$。否则,答案就是 $-1$。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution:
    def minSizeSubarray(self, nums: List[int], target: int) -> int:
        s = sum(nums)
        n = len(nums)
        a = 0
        if target > s:
            a = n * (target // s)
            target -= target // s * s
        if target == s:
            return n
        pos = {0: -1}
        pre = 0
        b = inf
        for i, x in enumerate(nums):
            pre += x
            if (t := pre - target) in pos:
                b = min(b, i - pos[t])
            if (t := pre - (s - target)) in pos:
                b = min(b, n - (i - pos[t]))
            pos[pre] = i
        return -1 if b == inf else a + b
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
    public int minSizeSubarray(int[] nums, int target) {
        long s = Arrays.stream(nums).sum();
        int n = nums.length;
        int a = 0;
        if (target > s) {
            a = n * (target / (int) s);
            target -= target / s * s;
        }
        if (target == s) {
            return n;
        }
        Map<Long, Integer> pos = new HashMap<>();
        pos.put(0L, -1);
        long pre = 0;
        int b = 1 << 30;
        for (int i = 0; i < n; ++i) {
            pre += nums[i];
            if (pos.containsKey(pre - target)) {
                b = Math.min(b, i - pos.get(pre - target));
            }
            if (pos.containsKey(pre - (s - target))) {
                b = Math.min(b, n - (i - pos.get(pre - (s - target))));
            }
            pos.put(pre, i);
        }
        return b == 1 << 30 ? -1 : a + b;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public:
    int minSizeSubarray(vector<int>& nums, int target) {
        long long s = accumulate(nums.begin(), nums.end(), 0LL);
        int n = nums.size();
        int a = 0;
        if (target > s) {
            a = n * (target / s);
            target -= target / s * s;
        }
        if (target == s) {
            return n;
        }
        unordered_map<int, int> pos{{0, -1}};
        long long pre = 0;
        int b = 1 << 30;
        for (int i = 0; i < n; ++i) {
            pre += nums[i];
            if (pos.count(pre - target)) {
                b = min(b, i - pos[pre - target]);
            }
            if (pos.count(pre - (s - target))) {
                b = min(b, n - (i - pos[pre - (s - target)]));
            }
            pos[pre] = i;
        }
        return b == 1 << 30 ? -1 : a + b;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
func minSizeSubarray(nums []int, target int) int {
    s := 0
    for _, x := range nums {
        s += x
    }
    n := len(nums)
    a := 0
    if target > s {
        a = n * (target / s)
        target -= target / s * s
    }
    if target == s {
        return n
    }
    pos := map[int]int{0: -1}
    pre := 0
    b := 1 << 30
    for i, x := range nums {
        pre += x
        if j, ok := pos[pre-target]; ok {
            b = min(b, i-j)
        }
        if j, ok := pos[pre-(s-target)]; ok {
            b = min(b, n-(i-j))
        }
        pos[pre] = i
    }
    if b == 1<<30 {
        return -1
    }
    return a + b
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
function minSizeSubarray(nums: number[], target: number): number {
    const s = nums.reduce((a, b) => a + b);
    const n = nums.length;
    let a = 0;
    if (target > s) {
        a = n * ((target / s) | 0);
        target -= ((target / s) | 0) * s;
    }
    if (target === s) {
        return n;
    }
    const pos: Map<number, number> = new Map();
    let pre = 0;
    pos.set(0, -1);
    let b = Infinity;
    for (let i = 0; i < n; ++i) {
        pre += nums[i];
        if (pos.has(pre - target)) {
            b = Math.min(b, i - pos.get(pre - target)!);
        }
        if (pos.has(pre - (s - target))) {
            b = Math.min(b, n - (i - pos.get(pre - (s - target))!));
        }
        pos.set(pre, i);
    }
    return b === Infinity ? -1 : a + b;
}

评论