题目描述
给你一个下标从 0 开始的数组 nums
和一个整数 target
。
下标从 0 开始的数组 infinite_nums
是通过无限地将 nums 的元素追加到自己之后生成的。
请你从 infinite_nums
中找出满足 元素和 等于 target
的 最短 子数组,并返回该子数组的长度。如果不存在满足条件的子数组,返回 -1
。
示例 1:
输入:nums = [1,2,3], target = 5
输出:2
解释:在这个例子中 infinite_nums = [1,2,3,1,2,3,1,2,...] 。
区间 [1,2] 内的子数组的元素和等于 target = 5 ,且长度 length = 2 。
可以证明,当元素和等于目标值 target = 5 时,2 是子数组的最短长度。
示例 2:
输入:nums = [1,1,1,2,3], target = 4
输出:2
解释:在这个例子中 infinite_nums = [1,1,1,2,3,1,1,1,2,3,1,1,...].
区间 [4,5] 内的子数组的元素和等于 target = 4 ,且长度 length = 2 。
可以证明,当元素和等于目标值 target = 4 时,2 是子数组的最短长度。
示例 3:
输入:nums = [2,4,6,8], target = 3
输出:-1
解释:在这个例子中 infinite_nums = [2,4,6,8,2,4,6,8,...] 。
可以证明,不存在元素和等于目标值 target = 3 的子数组。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 105
1 <= target <= 109
解法
方法一:前缀和 + 哈希表
我们先算出数组 $nums$ 的元素总和,记为 $s$。
如果 $target \gt s$,那么我们可以将 $target$ 减去 $\lfloor \frac{target}{s} \rfloor \times s$,这样就可以将 $target$ 减小到 $[0, s)$ 的范围内。那么此时子数组的长度为 $a = \lfloor \frac{target}{s} \rfloor \times n$,其中 $n$ 是数组 $nums$ 的长度。
接下来,我们只需要在数组 $nums$ 中,找出长度最短的且元素和等于 $target$ 的子数组,或者长度最短的且前缀和加上后缀和等于 $target$,即子数组元素和等于 $s - target$ 的子数组,记长度为 $b$。我们可以通过前缀和加哈希表的方法,找出这样的子数组。
如果找到了这样的子数组,那么最终的答案就是 $a + b$。否则,答案就是 $-1$。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution:
def minSizeSubarray(self, nums: List[int], target: int) -> int:
s = sum(nums)
n = len(nums)
a = 0
if target > s:
a = n * (target // s)
target -= target // s * s
if target == s:
return n
pos = {0: -1}
pre = 0
b = inf
for i, x in enumerate(nums):
pre += x
if (t := pre - target) in pos:
b = min(b, i - pos[t])
if (t := pre - (s - target)) in pos:
b = min(b, n - (i - pos[t]))
pos[pre] = i
return -1 if b == inf else a + b
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | class Solution {
public int minSizeSubarray(int[] nums, int target) {
long s = Arrays.stream(nums).sum();
int n = nums.length;
int a = 0;
if (target > s) {
a = n * (target / (int) s);
target -= target / s * s;
}
if (target == s) {
return n;
}
Map<Long, Integer> pos = new HashMap<>();
pos.put(0L, -1);
long pre = 0;
int b = 1 << 30;
for (int i = 0; i < n; ++i) {
pre += nums[i];
if (pos.containsKey(pre - target)) {
b = Math.min(b, i - pos.get(pre - target));
}
if (pos.containsKey(pre - (s - target))) {
b = Math.min(b, n - (i - pos.get(pre - (s - target))));
}
pos.put(pre, i);
}
return b == 1 << 30 ? -1 : a + b;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | class Solution {
public:
int minSizeSubarray(vector<int>& nums, int target) {
long long s = accumulate(nums.begin(), nums.end(), 0LL);
int n = nums.size();
int a = 0;
if (target > s) {
a = n * (target / s);
target -= target / s * s;
}
if (target == s) {
return n;
}
unordered_map<int, int> pos{{0, -1}};
long long pre = 0;
int b = 1 << 30;
for (int i = 0; i < n; ++i) {
pre += nums[i];
if (pos.count(pre - target)) {
b = min(b, i - pos[pre - target]);
}
if (pos.count(pre - (s - target))) {
b = min(b, n - (i - pos[pre - (s - target)]));
}
pos[pre] = i;
}
return b == 1 << 30 ? -1 : a + b;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | func minSizeSubarray(nums []int, target int) int {
s := 0
for _, x := range nums {
s += x
}
n := len(nums)
a := 0
if target > s {
a = n * (target / s)
target -= target / s * s
}
if target == s {
return n
}
pos := map[int]int{0: -1}
pre := 0
b := 1 << 30
for i, x := range nums {
pre += x
if j, ok := pos[pre-target]; ok {
b = min(b, i-j)
}
if j, ok := pos[pre-(s-target)]; ok {
b = min(b, n-(i-j))
}
pos[pre] = i
}
if b == 1<<30 {
return -1
}
return a + b
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | function minSizeSubarray(nums: number[], target: number): number {
const s = nums.reduce((a, b) => a + b);
const n = nums.length;
let a = 0;
if (target > s) {
a = n * ((target / s) | 0);
target -= ((target / s) | 0) * s;
}
if (target === s) {
return n;
}
const pos: Map<number, number> = new Map();
let pre = 0;
pos.set(0, -1);
let b = Infinity;
for (let i = 0; i < n; ++i) {
pre += nums[i];
if (pos.has(pre - target)) {
b = Math.min(b, i - pos.get(pre - target)!);
}
if (pos.has(pre - (s - target))) {
b = Math.min(b, n - (i - pos.get(pre - (s - target))!));
}
pos.set(pre, i);
}
return b === Infinity ? -1 : a + b;
}
|