跳转至

2858. 可以到达每一个节点的最少边反转次数

题目描述

给你一个 n 个点的 简单有向图 (没有重复边的有向图),节点编号为 0 到 n - 1 。如果这些边是双向边,那么这个图形成一棵  。

给你一个整数 n 和一个 二维 整数数组 edges ,其中 edges[i] = [ui, vi] 表示从节点 ui 到节点 vi 有一条 有向边 。

边反转 指的是将一条边的方向反转,也就是说一条从节点 ui 到节点 vi 的边会变为一条从节点 vi 到节点 ui 的边。

对于范围 [0, n - 1] 中的每一个节点 i ,你的任务是分别 独立 计算 最少 需要多少次 边反转 ,从节点 i 出发经过 一系列有向边 ,可以到达所有的节点。

请你返回一个长度为 n 的整数数组 answer ,其中 answer[i]表示从节点 i 出发,可以到达所有节点的 最少边反转 次数。

 

示例 1:

输入:n = 4, edges = [[2,0],[2,1],[1,3]]
输出:[1,1,0,2]
解释:上图表示了与输入对应的简单有向图。
对于节点 0 :反转 [2,0] ,从节点 0 出发可以到达所有节点。
所以 answer[0] = 1 。
对于节点 1 :反转 [2,1] ,从节点 1 出发可以到达所有节点。
所以 answer[1] = 1 。
对于节点 2 :不需要反转就可以从节点 2 出发到达所有节点。
所以 answer[2] = 0 。
对于节点 3 :反转 [1,3] 和 [2,1] ,从节点 3 出发可以到达所有节点。
所以 answer[3] = 2 。

示例 2:

输入:n = 3, edges = [[1,2],[2,0]]
输出:[2,0,1]
解释:上图表示了与输入对应的简单有向图。
对于节点 0 :反转 [2,0] 和 [1,2] ,从节点 0 出发可以到达所有节点。
所以 answer[0] = 2 。
对于节点 1 :不需要反转就可以从节点 2 出发到达所有节点。
所以 answer[1] = 0 。
对于节点 2 :反转 [1,2] ,从节点 2 出发可以到达所有节点。
所以 answer[2] = 1 。

 

提示:

  • 2 <= n <= 105
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= ui == edges[i][0] < n
  • 0 <= vi == edges[i][1] < n
  • ui != vi
  • 输入保证如果边是双向边,可以得到一棵树。

解法

方法一:树形 DP

时间复杂度 $O(n)$,空间复杂度 $O(n)$。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution:
    def minEdgeReversals(self, n: int, edges: List[List[int]]) -> List[int]:
        ans = [0] * n
        g = [[] for _ in range(n)]
        for x, y in edges:
            g[x].append((y, 1))
            g[y].append((x, -1))

        def dfs(i: int, fa: int):
            for j, k in g[i]:
                if j != fa:
                    ans[0] += int(k < 0)
                    dfs(j, i)

        dfs(0, -1)

        def dfs2(i: int, fa: int):
            for j, k in g[i]:
                if j != fa:
                    ans[j] = ans[i] + k
                    dfs2(j, i)

        dfs2(0, -1)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Solution {
    private List<int[]>[] g;
    private int[] ans;

    public int[] minEdgeReversals(int n, int[][] edges) {
        ans = new int[n];
        g = new List[n];
        Arrays.setAll(g, i -> new ArrayList<>());
        for (var e : edges) {
            int x = e[0], y = e[1];
            g[x].add(new int[] {y, 1});
            g[y].add(new int[] {x, -1});
        }
        dfs(0, -1);
        dfs2(0, -1);
        return ans;
    }

    private void dfs(int i, int fa) {
        for (var ne : g[i]) {
            int j = ne[0], k = ne[1];
            if (j != fa) {
                ans[0] += k < 0 ? 1 : 0;
                dfs(j, i);
            }
        }
    }

    private void dfs2(int i, int fa) {
        for (var ne : g[i]) {
            int j = ne[0], k = ne[1];
            if (j != fa) {
                ans[j] = ans[i] + k;
                dfs2(j, i);
            }
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public:
    vector<int> minEdgeReversals(int n, vector<vector<int>>& edges) {
        vector<pair<int, int>> g[n];
        vector<int> ans(n);
        for (auto& e : edges) {
            int x = e[0], y = e[1];
            g[x].emplace_back(y, 1);
            g[y].emplace_back(x, -1);
        }
        function<void(int, int)> dfs = [&](int i, int fa) {
            for (auto& [j, k] : g[i]) {
                if (j != fa) {
                    ans[0] += k < 0;
                    dfs(j, i);
                }
            }
        };
        function<void(int, int)> dfs2 = [&](int i, int fa) {
            for (auto& [j, k] : g[i]) {
                if (j != fa) {
                    ans[j] = ans[i] + k;
                    dfs2(j, i);
                }
            }
        };
        dfs(0, -1);
        dfs2(0, -1);
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
func minEdgeReversals(n int, edges [][]int) []int {
    g := make([][][2]int, n)
    for _, e := range edges {
        x, y := e[0], e[1]
        g[x] = append(g[x], [2]int{y, 1})
        g[y] = append(g[y], [2]int{x, -1})
    }
    ans := make([]int, n)
    var dfs func(int, int)
    var dfs2 func(int, int)
    dfs = func(i, fa int) {
        for _, ne := range g[i] {
            j, k := ne[0], ne[1]
            if j != fa {
                if k < 0 {
                    ans[0]++
                }
                dfs(j, i)
            }
        }
    }
    dfs2 = func(i, fa int) {
        for _, ne := range g[i] {
            j, k := ne[0], ne[1]
            if j != fa {
                ans[j] = ans[i] + k
                dfs2(j, i)
            }
        }
    }
    dfs(0, -1)
    dfs2(0, -1)
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
function minEdgeReversals(n: number, edges: number[][]): number[] {
    const g: number[][][] = Array.from({ length: n }, () => []);
    for (const [x, y] of edges) {
        g[x].push([y, 1]);
        g[y].push([x, -1]);
    }
    const ans: number[] = Array(n).fill(0);
    const dfs = (i: number, fa: number) => {
        for (const [j, k] of g[i]) {
            if (j !== fa) {
                ans[0] += k < 0 ? 1 : 0;
                dfs(j, i);
            }
        }
    };
    const dfs2 = (i: number, fa: number) => {
        for (const [j, k] of g[i]) {
            if (j !== fa) {
                ans[j] = ans[i] + k;
                dfs2(j, i);
            }
        }
    };
    dfs(0, -1);
    dfs2(0, -1);
    return ans;
}

评论