跳转至

2851. 字符串转换

题目描述

给你两个长度都为 n 的字符串 s 和 t 。你可以对字符串 s 执行以下操作:

  • s 长度为 l (0 < l < n)的 后缀字符串 删除,并将它添加在 s 的开头。
    比方说,s = 'abcd' ,那么一次操作中,你可以删除后缀 'cd' ,并将它添加到 s 的开头,得到 s = 'cdab' 。

给你一个整数 k ,请你返回 恰好 k 次操作将 s 变为 t 的方案数。

由于答案可能很大,返回答案对 109 + 7 取余 后的结果。

 

示例 1:

输入:s = "abcd", t = "cdab", k = 2
输出:2
解释:
第一种方案:
第一次操作,选择 index = 3 开始的后缀,得到 s = "dabc" 。
第二次操作,选择 index = 3 开始的后缀,得到 s = "cdab" 。

第二种方案:
第一次操作,选择 index = 1 开始的后缀,得到 s = "bcda" 。
第二次操作,选择 index = 1 开始的后缀,得到 s = "cdab" 。

示例 2:

输入:s = "ababab", t = "ababab", k = 1
输出:2
解释:
第一种方案:
选择 index = 2 开始的后缀,得到 s = "ababab" 。

第二种方案:
选择 index = 4 开始的后缀,得到 s = "ababab" 。

 

提示:

  • 2 <= s.length <= 5 * 105
  • 1 <= k <= 1015
  • s.length == t.length
  • s 和 t 都只包含小写英文字母。

解法

方法一

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
"""
DP, Z-algorithm, Fast mod.
Approach
How to represent a string?
Each operation is just a rotation. Each result string can be represented by an integer from 0 to n - 1. Namely, it's just the new index of s[0].
How to find the integer(s) that can represent string t?
Create a new string s + t + t (length = 3 * n).
Use Z-algorithm (or KMP), for each n <= index < 2 * n, calculate the maximum prefix length that each substring starts from index can match, if the length >= n, then (index - n) is a valid integer representation.
How to get the result?
It's a very obvious DP.
If we use an integer to represent a string, we only need to consider the transition from zero to non-zero and from non-zero to zero. In other words, all the non-zero strings should have the same result.
So let dp[t][i = 0/1] be the number of ways to get the zero/nonzero string
after excatly t steps.
Then
dp[t][0] = dp[t - 1][1] * (n - 1).
All the non zero strings can make it.
dp[t][1] = dp[t - 1][0] + dp[t - 1] * (n - 2).
For a particular non zero string, all the other non zero strings and zero string can make it.
We have dp[0][0] = 1 and dp[0][1] = 0
Use matrix multiplication.
How to calculate dp[k][x = 0, 1] faster?
Use matrix multiplication
vector (dp[t - 1][0], dp[t - 1][1])
multiplies matrix
[0 1]
[n - 1 n - 2]
== vector (dp[t][0], dp[t - 1][1]).
So we just need to calculate the kth power of the matrix which can be done by fast power algorith.
Complexity
Time complexity:
O(n + logk)
Space complexity:
O(n)
"""


class Solution:
    M: int = 1000000007

    def add(self, x: int, y: int) -> int:
        x += y
        if x >= self.M:
            x -= self.M
        return x

    def mul(self, x: int, y: int) -> int:
        return int(x * y % self.M)

    def getZ(self, s: str) -> List[int]:
        n = len(s)
        z = [0] * n
        left = right = 0
        for i in range(1, n):
            if i <= right and z[i - left] <= right - i:
                z[i] = z[i - left]
            else:
                z_i = max(0, right - i + 1)
                while i + z_i < n and s[i + z_i] == s[z_i]:
                    z_i += 1
                z[i] = z_i
            if i + z[i] - 1 > right:
                left = i
                right = i + z[i] - 1
        return z

    def matrixMultiply(self, a: List[List[int]], b: List[List[int]]) -> List[List[int]]:
        m = len(a)
        n = len(a[0])
        p = len(b[0])
        r = [[0] * p for _ in range(m)]
        for i in range(m):
            for j in range(p):
                for k in range(n):
                    r[i][j] = self.add(r[i][j], self.mul(a[i][k], b[k][j]))
        return r

    def matrixPower(self, a: List[List[int]], y: int) -> List[List[int]]:
        n = len(a)
        r = [[0] * n for _ in range(n)]
        for i in range(n):
            r[i][i] = 1
        x = [a[i][:] for i in range(n)]
        while y > 0:
            if y & 1:
                r = self.matrixMultiply(r, x)
            x = self.matrixMultiply(x, x)
            y >>= 1
        return r

    def numberOfWays(self, s: str, t: str, k: int) -> int:
        n = len(s)
        dp = self.matrixPower([[0, 1], [n - 1, n - 2]], k)[0]
        s += t + t
        z = self.getZ(s)
        m = n + n
        result = 0
        for i in range(n, m):
            if z[i] >= n:
                result = self.add(result, dp[0] if i - n == 0 else dp[1])
        return result
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
class Solution {
    private static final int M = 1000000007;

    private int add(int x, int y) {
        if ((x += y) >= M) {
            x -= M;
        }
        return x;
    }

    private int mul(long x, long y) {
        return (int) (x * y % M);
    }

    private int[] getZ(String s) {
        int n = s.length();
        int[] z = new int[n];
        for (int i = 1, left = 0, right = 0; i < n; ++i) {
            if (i <= right && z[i - left] <= right - i) {
                z[i] = z[i - left];
            } else {
                int z_i = Math.max(0, right - i + 1);
                while (i + z_i < n && s.charAt(i + z_i) == s.charAt(z_i)) {
                    z_i++;
                }
                z[i] = z_i;
            }
            if (i + z[i] - 1 > right) {
                left = i;
                right = i + z[i] - 1;
            }
        }
        return z;
    }

    private int[][] matrixMultiply(int[][] a, int[][] b) {
        int m = a.length, n = a[0].length, p = b[0].length;
        int[][] r = new int[m][p];
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < p; ++j) {
                for (int k = 0; k < n; ++k) {
                    r[i][j] = add(r[i][j], mul(a[i][k], b[k][j]));
                }
            }
        }
        return r;
    }

    private int[][] matrixPower(int[][] a, long y) {
        int n = a.length;
        int[][] r = new int[n][n];
        for (int i = 0; i < n; ++i) {
            r[i][i] = 1;
        }
        int[][] x = new int[n][n];
        for (int i = 0; i < n; ++i) {
            System.arraycopy(a[i], 0, x[i], 0, n);
        }
        while (y > 0) {
            if ((y & 1) == 1) {
                r = matrixMultiply(r, x);
            }
            x = matrixMultiply(x, x);
            y >>= 1;
        }
        return r;
    }

    public int numberOfWays(String s, String t, long k) {
        int n = s.length();
        int[] dp = matrixPower(new int[][] {{0, 1}, {n - 1, n - 2}}, k)[0];
        s += t + t;
        int[] z = getZ(s);
        int m = n + n;
        int result = 0;
        for (int i = n; i < m; ++i) {
            if (z[i] >= n) {
                result = add(result, dp[i - n == 0 ? 0 : 1]);
            }
        }
        return result;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
class Solution {
    const int M = 1000000007;

    int add(int x, int y) {
        if ((x += y) >= M) {
            x -= M;
        }
        return x;
    }

    int mul(long long x, long long y) {
        return x * y % M;
    }

    vector<int> getz(const string& s) {
        const int n = s.length();
        vector<int> z(n);
        for (int i = 1, left = 0, right = 0; i < n; ++i) {
            if (i <= right && z[i - left] <= right - i) {
                z[i] = z[i - left];
            } else {
                for (z[i] = max(0, right - i + 1); i + z[i] < n && s[i + z[i]] == s[z[i]]; ++z[i])
                    ;
            }
            if (i + z[i] - 1 > right) {
                left = i;
                right = i + z[i] - 1;
            }
        }
        return z;
    }

    vector<vector<int>> mul(const vector<vector<int>>& a, const vector<vector<int>>& b) {
        const int m = a.size(), n = a[0].size(), p = b[0].size();
        vector<vector<int>> r(m, vector<int>(p));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                for (int k = 0; k < p; ++k) {
                    r[i][k] = add(r[i][k], mul(a[i][j], b[j][k]));
                }
            }
        }
        return r;
    }

    vector<vector<int>> pow(const vector<vector<int>>& a, long long y) {
        const int n = a.size();
        vector<vector<int>> r(n, vector<int>(n));
        for (int i = 0; i < n; ++i) {
            r[i][i] = 1;
        }
        auto x = a;
        for (; y; y >>= 1) {
            if (y & 1) {
                r = mul(r, x);
            }
            x = mul(x, x);
        }
        return r;
    }

public:
    int numberOfWays(string s, string t, long long k) {
        const int n = s.length();
        const auto dp = pow({{0, 1}, {n - 1, n - 2}}, k)[0];
        s.append(t);
        s.append(t);
        const auto z = getz(s);
        const int m = n + n;
        int r = 0;
        for (int i = n; i < m; ++i) {
            if (z[i] >= n) {
                r = add(r, dp[!!(i - n)]);
            }
        }
        return r;
    }
};

评论