跳转至

2799. 统计完全子数组的数目

题目描述

给你一个由 整数组成的数组 nums

如果数组中的某个子数组满足下述条件,则称之为 完全子数组

  • 子数组中 不同 元素的数目等于整个数组不同元素的数目。

返回数组中 完全子数组 的数目。

子数组 是数组中的一个连续非空序列。

 

示例 1:

输入:nums = [1,3,1,2,2]
输出:4
解释:完全子数组有:[1,3,1,2]、[1,3,1,2,2]、[3,1,2] 和 [3,1,2,2] 。

示例 2:

输入:nums = [5,5,5,5]
输出:10
解释:数组仅由整数 5 组成,所以任意子数组都满足完全子数组的条件。子数组的总数为 10 。

 

提示:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 2000

解法

方法一:哈希表 + 枚举

我们先用哈希表统计数组中不同元素的数目,记为 $cnt$。

接下来,我们枚举子数组的左端点下标 $i$,并维护一个集合 $s$,用于存储子数组中的元素。每次向右移动右端点下标 $j$ 时,我们将 $nums[j]$ 加入集合 $s$ 中,并判断集合 $s$ 的大小是否等于 $cnt$。如果等于 $cnt$,则说明当前子数组是完全子数组,我们将答案增加 $1$。

枚举结束后,返回答案即可。

时间复杂度 $O(n^2)$,空间复杂度 $O(n)$。其中 $n$ 是数组的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def countCompleteSubarrays(self, nums: List[int]) -> int:
        cnt = len(set(nums))
        ans, n = 0, len(nums)
        for i in range(n):
            s = set()
            for x in nums[i:]:
                s.add(x)
                if len(s) == cnt:
                    ans += 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
    public int countCompleteSubarrays(int[] nums) {
        Set<Integer> s = new HashSet<>();
        for (int x : nums) {
            s.add(x);
        }
        int cnt = s.size();
        int ans = 0, n = nums.length;
        for (int i = 0; i < n; ++i) {
            s.clear();
            for (int j = i; j < n; ++j) {
                s.add(nums[j]);
                if (s.size() == cnt) {
                    ++ans;
                }
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
public:
    int countCompleteSubarrays(vector<int>& nums) {
        unordered_set<int> s(nums.begin(), nums.end());
        int cnt = s.size();
        int ans = 0, n = nums.size();
        for (int i = 0; i < n; ++i) {
            s.clear();
            for (int j = i; j < n; ++j) {
                s.insert(nums[j]);
                if (s.size() == cnt) {
                    ++ans;
                }
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
func countCompleteSubarrays(nums []int) (ans int) {
    s := map[int]bool{}
    for _, x := range nums {
        s[x] = true
    }
    cnt := len(s)
    for i := range nums {
        s = map[int]bool{}
        for _, x := range nums[i:] {
            s[x] = true
            if len(s) == cnt {
                ans++
            }
        }
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
function countCompleteSubarrays(nums: number[]): number {
    const s: Set<number> = new Set(nums);
    const cnt = s.size;
    const n = nums.length;
    let ans = 0;
    for (let i = 0; i < n; ++i) {
        s.clear();
        for (let j = i; j < n; ++j) {
            s.add(nums[j]);
            if (s.size === cnt) {
                ++ans;
            }
        }
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
use std::collections::HashSet;
impl Solution {
    pub fn count_complete_subarrays(nums: Vec<i32>) -> i32 {
        let mut set: HashSet<&i32> = nums.iter().collect();
        let n = nums.len();
        let m = set.len();
        let mut ans = 0;
        for i in 0..n {
            set.clear();
            for j in i..n {
                set.insert(&nums[j]);
                if set.len() == m {
                    ans += n - j;
                    break;
                }
            }
        }
        ans as i32
    }
}

方法二:哈希表 + 双指针

与方法一类似,我们可以使用哈希表统计数组中不同元素的数目,记为 $cnt$。

接下来,我们使用双指针维护一个滑动窗口,滑动窗口的右端点下标为 $j$,左端点下标为 $i$。

每次固定左端点下标 $i$,然后向右移动右端点下标 $j$,当滑动窗口中的元素种类数等于 $cnt$ 时,这意味着从左端点下标 $i$ 到右端点下标 $j$ 以及右侧的所有子数组都是完全子数组,我们将答案增加 $n - j$,其中 $n$ 是数组的长度。然后我们将左端点下标 $i$ 右移一位,继续上述过程。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution:
    def countCompleteSubarrays(self, nums: List[int]) -> int:
        cnt = len(set(nums))
        d = Counter()
        ans, n = 0, len(nums)
        i = 0
        for j, x in enumerate(nums):
            d[x] += 1
            while len(d) == cnt:
                ans += n - j
                d[nums[i]] -= 1
                if d[nums[i]] == 0:
                    d.pop(nums[i])
                i += 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
    public int countCompleteSubarrays(int[] nums) {
        Map<Integer, Integer> d = new HashMap<>();
        for (int x : nums) {
            d.put(x, 1);
        }
        int cnt = d.size();
        int ans = 0, n = nums.length;
        d.clear();
        for (int i = 0, j = 0; j < n; ++j) {
            d.merge(nums[j], 1, Integer::sum);
            while (d.size() == cnt) {
                ans += n - j;
                if (d.merge(nums[i], -1, Integer::sum) == 0) {
                    d.remove(nums[i]);
                }
                ++i;
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public:
    int countCompleteSubarrays(vector<int>& nums) {
        unordered_map<int, int> d;
        for (int x : nums) {
            d[x] = 1;
        }
        int cnt = d.size();
        d.clear();
        int ans = 0, n = nums.size();
        for (int i = 0, j = 0; j < n; ++j) {
            d[nums[j]]++;
            while (d.size() == cnt) {
                ans += n - j;
                if (--d[nums[i]] == 0) {
                    d.erase(nums[i]);
                }
                ++i;
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
func countCompleteSubarrays(nums []int) (ans int) {
    d := map[int]int{}
    for _, x := range nums {
        d[x] = 1
    }
    cnt := len(d)
    i, n := 0, len(nums)
    d = map[int]int{}
    for j, x := range nums {
        d[x]++
        for len(d) == cnt {
            ans += n - j
            d[nums[i]]--
            if d[nums[i]] == 0 {
                delete(d, nums[i])
            }
            i++
        }
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
function countCompleteSubarrays(nums: number[]): number {
    const d: Map<number, number> = new Map();
    for (const x of nums) {
        d.set(x, (d.get(x) ?? 0) + 1);
    }
    const cnt = d.size;
    d.clear();
    const n = nums.length;
    let ans = 0;
    let i = 0;
    for (let j = 0; j < n; ++j) {
        d.set(nums[j], (d.get(nums[j]) ?? 0) + 1);
        while (d.size === cnt) {
            ans += n - j;
            d.set(nums[i], d.get(nums[i])! - 1);
            if (d.get(nums[i]) === 0) {
                d.delete(nums[i]);
            }
            ++i;
        }
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
use std::collections::HashMap;
use std::collections::HashSet;
impl Solution {
    pub fn count_complete_subarrays(nums: Vec<i32>) -> i32 {
        let n = nums.len();
        let m = nums.iter().collect::<HashSet<&i32>>().len();
        let mut map = HashMap::new();
        let mut ans = 0;
        let mut i = 0;
        for j in 0..n {
            *map.entry(nums[j]).or_insert(0) += 1;
            while map.len() == m {
                ans += n - j;
                let v = map.entry(nums[i]).or_default();
                *v -= 1;
                if *v == 0 {
                    map.remove(&nums[i]);
                }
                i += 1;
            }
        }
        ans as i32
    }
}

评论