2780. 合法分割的最小下标
题目描述
如果元素 x
在长度为 m
的整数数组 arr
中满足 freq(x) * 2 > m
,那么我们称 x
是 支配元素 。其中 freq(x)
是 x
在数组 arr
中出现的次数。注意,根据这个定义,数组 arr
最多 只会有 一个 支配元素。
给你一个下标从 0 开始长度为 n
的整数数组 nums
,数据保证它含有一个支配元素。
你需要在下标 i
处将 nums
分割成两个数组 nums[0, ..., i]
和 nums[i + 1, ..., n - 1]
,如果一个分割满足以下条件,我们称它是 合法 的:
0 <= i < n - 1
nums[0, ..., i]
和nums[i + 1, ..., n - 1]
的支配元素相同。
这里, nums[i, ..., j]
表示 nums
的一个子数组,它开始于下标 i
,结束于下标 j
,两个端点都包含在子数组内。特别地,如果 j < i
,那么 nums[i, ..., j]
表示一个空数组。
请你返回一个 合法分割 的 最小 下标。如果合法分割不存在,返回 -1
。
示例 1:
输入:nums = [1,2,2,2] 输出:2 解释:我们将数组在下标 2 处分割,得到 [1,2,2] 和 [2] 。 数组 [1,2,2] 中,元素 2 是支配元素,因为它在数组中出现了 2 次,且 2 * 2 > 3 。 数组 [2] 中,元素 2 是支配元素,因为它在数组中出现了 1 次,且 1 * 2 > 1 。 两个数组 [1,2,2] 和 [2] 都有与 nums 一样的支配元素,所以这是一个合法分割。 下标 2 是合法分割中的最小下标。
示例 2:
输入:nums = [2,1,3,1,1,1,7,1,2,1] 输出:4 解释:我们将数组在下标 4 处分割,得到 [2,1,3,1,1] 和 [1,7,1,2,1] 。 数组 [2,1,3,1,1] 中,元素 1 是支配元素,因为它在数组中出现了 3 次,且 3 * 2 > 5 。 数组 [1,7,1,2,1] 中,元素 1 是支配元素,因为它在数组中出现了 3 次,且 3 * 2 > 5 。 两个数组 [2,1,3,1,1] 和 [1,7,1,2,1] 都有与 nums 一样的支配元素,所以这是一个合法分割。 下标 4 是所有合法分割中的最小下标。
示例 3:
输入:nums = [3,3,3,3,7,2,2] 输出:-1 解释:没有合法分割。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 109
nums
有且只有一个支配元素。
解法
方法一:哈希表
我们用哈希表统计每个元素出现的次数,然后找出出现次数最多的元素 $x$,即为支配元素。要使得分割后的两个数组中都有支配元素,且支配元素相同,那么支配元素一定是 $x$。
接下来,我们只需要遍历数组 $nums$,累加前缀中 $x$ 的出现次数 $cur$,并判断 $x$ 在后缀中出现的次数是否满足要求即可。如果满足要求,那么当前下标 $i$ 就是一个可行的分割下标,我们只需要选择所有可行分割下标中最小的那个即可。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|