跳转至

2763. 所有子数组中不平衡数字之和

题目描述

一个长度为 n 下标从 0 开始的整数数组 arr 的 不平衡数字 定义为,在 sarr = sorted(arr) 数组中,满足以下条件的下标数目:

  • 0 <= i < n - 1 ,和
  • sarr[i+1] - sarr[i] > 1

这里,sorted(arr) 表示将数组 arr 排序后得到的数组。

给你一个下标从 0 开始的整数数组 nums ,请你返回它所有 子数组 的 不平衡数字 之和。

子数组指的是一个数组中连续一段 非空 的元素序列。

 

示例 1:

输入:nums = [2,3,1,4]
输出:3
解释:总共有 3 个子数组有非 0 不平衡数字:
- 子数组 [3, 1] ,不平衡数字为 1 。
- 子数组 [3, 1, 4] ,不平衡数字为 1 。
- 子数组 [1, 4] ,不平衡数字为 1 。
其他所有子数组的不平衡数字都是 0 ,所以所有子数组的不平衡数字之和为 3 。

示例 2:

输入:nums = [1,3,3,3,5]
输出:8
解释:总共有 7 个子数组有非 0 不平衡数字:
- 子数组 [1, 3] ,不平衡数字为 1 。
- 子数组 [1, 3, 3] ,不平衡数字为 1 。
- 子数组 [1, 3, 3, 3] ,不平衡数字为 1 。
- 子数组 [1, 3, 3, 3, 5] ,不平衡数字为 2 。
- 子数组 [3, 3, 3, 5] ,不平衡数字为 1 。
- 子数组 [3, 3, 5] ,不平衡数字为 1 。
- 子数组 [3, 5] ,不平衡数字为 1 。
其他所有子数组的不平衡数字都是 0 ,所以所有子数组的不平衡数字之和为 8 。

 

提示:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= nums.length

解法

方法一:枚举 + 有序集合

我们可以先枚举子数组的左端点 $i$,对于每个 $i$,我们从小到大枚举子数组的右端点 $j$,并且用一个有序列表维护当前子数组中的所有元素,用一个变量 $cnt$ 维护当前子数组的不平衡数字。

对于每个数字 $nums[j]$,我们在有序列表中找到第一个大于等于 $nums[j]$ 的元素 $nums[k]$,以及最后一个小于 $nums[j]$ 的元素 $nums[h]$:

  • 如果 $nums[k]$ 存在,并且 $nums[k]$ 与 $nums[j]$ 的差值大于 $1$,那么不平衡数字加 $1$;
  • 如果 $nums[h]$ 存在,并且 $nums[j]$ 与 $nums[h]$ 的差值大于 $1$,那么不平衡数字加 $1$;
  • 如果 $nums[k]$ 存在,并且 $nums[h]$ 存在,那么将元素 $nums[j]$ 插入 $nums[h]$ 和 $nums[k]$ 的中间,会使得平衡数字减 $1$。

然后,我们将当前子数组的平衡数字累加到答案中,继续遍历,直到遍历完所有子数组。

时间复杂度 $O(n^2 \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
from sortedcontainers import SortedList


class Solution:
    def sumImbalanceNumbers(self, nums: List[int]) -> int:
        n = len(nums)
        ans = 0
        for i in range(n):
            sl = SortedList()
            cnt = 0
            for j in range(i, n):
                k = sl.bisect_left(nums[j])
                h = k - 1
                if h >= 0 and nums[j] - sl[h] > 1:
                    cnt += 1
                if k < len(sl) and sl[k] - nums[j] > 1:
                    cnt += 1
                if h >= 0 and k < len(sl) and sl[k] - sl[h] > 1:
                    cnt -= 1
                sl.add(nums[j])
                ans += cnt
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
    public int sumImbalanceNumbers(int[] nums) {
        int n = nums.length;
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            TreeMap<Integer, Integer> tm = new TreeMap<>();
            int cnt = 0;
            for (int j = i; j < n; ++j) {
                Integer k = tm.ceilingKey(nums[j]);
                if (k != null && k - nums[j] > 1) {
                    ++cnt;
                }
                Integer h = tm.floorKey(nums[j]);
                if (h != null && nums[j] - h > 1) {
                    ++cnt;
                }
                if (h != null && k != null && k - h > 1) {
                    --cnt;
                }
                tm.merge(nums[j], 1, Integer::sum);
                ans += cnt;
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
    int sumImbalanceNumbers(vector<int>& nums) {
        int n = nums.size();
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            multiset<int> s;
            int cnt = 0;
            for (int j = i; j < n; ++j) {
                auto it = s.lower_bound(nums[j]);
                if (it != s.end() && *it - nums[j] > 1) {
                    ++cnt;
                }
                if (it != s.begin() && nums[j] - *prev(it) > 1) {
                    ++cnt;
                }
                if (it != s.end() && it != s.begin() && *it - *prev(it) > 1) {
                    --cnt;
                }
                s.insert(nums[j]);
                ans += cnt;
            }
        }
        return ans;
    }
};

评论