跳转至

275. H 指数 II

题目描述

给你一个整数数组 citations ,其中 citations[i] 表示研究者的第 i 篇论文被引用的次数,citations 已经按照 升序排列 。计算并返回该研究者的 h 指数。

h 指数的定义:h 代表“高引用次数”(high citations),一名科研人员的 h 指数是指他(她)的 (n 篇论文中)至少 h 篇论文分别被引用了至少 h 次。

请你设计并实现对数时间复杂度的算法解决此问题。

 

示例 1:

输入:citations = [0,1,3,5,6]
输出:3
解释:给定数组表示研究者总共有 5 篇论文,每篇论文相应的被引用了 0, 1, 3, 5, 6 次。
     由于研究者有3篇论文每篇 至少 被引用了 3 次,其余两篇论文每篇被引用 不多于 3 次,所以她的 h 指数是 3 。

示例 2:

输入:citations = [1,2,100]
输出:2

 

提示:

  • n == citations.length
  • 1 <= n <= 105
  • 0 <= citations[i] <= 1000
  • citations升序排列

解法

方法一:二分查找

我们注意到,如果有至少 $x$ 篇论文的引用次数大于等于 $x$,那么对于任意 $y \lt x$,其引用次数也一定大于等于 $y$。这存在着单调性。

因此,我们二分枚举 $h$,获取满足条件的最大 $h$。由于要满足 $h$ 篇论文至少被引用 $h$ 次,因此 $citations[n - mid] \ge mid$。

时间复杂度 $O(\log n)$,其中 $n$ 是数组 $citations$ 的长度。空间复杂度 $O(1)$。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def hIndex(self, citations: List[int]) -> int:
        n = len(citations)
        left, right = 0, n
        while left < right:
            mid = (left + right + 1) >> 1
            if citations[n - mid] >= mid:
                left = mid
            else:
                right = mid - 1
        return left
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
    public int hIndex(int[] citations) {
        int n = citations.length;
        int left = 0, right = n;
        while (left < right) {
            int mid = (left + right) >>> 1;
            if (citations[mid] >= n - mid) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return n - left;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
public:
    int hIndex(vector<int>& citations) {
        int n = citations.size();
        int left = 0, right = n;
        while (left < right) {
            int mid = (left + right + 1) >> 1;
            if (citations[n - mid] >= mid)
                left = mid;
            else
                right = mid - 1;
        }
        return left;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
func hIndex(citations []int) int {
    n := len(citations)
    left, right := 0, n
    for left < right {
        mid := (left + right + 1) >> 1
        if citations[n-mid] >= mid {
            left = mid
        } else {
            right = mid - 1
        }
    }
    return left
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
function hIndex(citations: number[]): number {
    const n = citations.length;
    let left = 0,
        right = n;
    while (left < right) {
        const mid = (left + right + 1) >> 1;
        if (citations[n - mid] >= mid) {
            left = mid;
        } else {
            right = mid - 1;
        }
    }
    return left;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
impl Solution {
    pub fn h_index(citations: Vec<i32>) -> i32 {
        let n = citations.len();
        let (mut left, mut right) = (0, n);
        while left < right {
            let mid = ((left + right + 1) >> 1) as usize;
            if citations[n - mid] >= (mid as i32) {
                left = mid;
            } else {
                right = mid - 1;
            }
        }
        left as i32
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
public class Solution {
    public int HIndex(int[] citations) {
        int n = citations.Length;
        int left = 0, right = n;
        while (left < right) {
            int mid = (left + right + 1) >> 1;
            if (citations[n - mid] >= mid) {
                left = mid;
            } else {
                right = mid - 1;
            }
        }
        return left;
    }
}

评论