2748. 美丽下标对的数目
题目描述
给你一个下标从 0 开始的整数数组 nums
。如果下标对 i
、j
满足 0 ≤ i < j < nums.length
,如果 nums[i]
的 第一个数字 和 nums[j]
的 最后一个数字 互质 ,则认为 nums[i]
和 nums[j]
是一组 美丽下标对 。
返回 nums
中 美丽下标对 的总数目。
对于两个整数 x
和 y
,如果不存在大于 1 的整数可以整除它们,则认为 x
和 y
互质 。换而言之,如果 gcd(x, y) == 1
,则认为 x
和 y
互质,其中 gcd(x, y)
是 x
和 y
的 最大公因数 。
示例 1:
输入:nums = [2,5,1,4] 输出:5 解释:nums 中共有 5 组美丽下标对: i = 0 和 j = 1 :nums[0] 的第一个数字是 2 ,nums[1] 的最后一个数字是 5 。2 和 5 互质,因此 gcd(2,5) == 1 。 i = 0 和 j = 2 :nums[0] 的第一个数字是 2 ,nums[2] 的最后一个数字是 1 。2 和 1 互质,因此 gcd(2,1) == 1 。 i = 1 和 j = 2 :nums[1] 的第一个数字是 5 ,nums[2] 的最后一个数字是 1 。5 和 1 互质,因此 gcd(5,1) == 1 。 i = 1 和 j = 3 :nums[1] 的第一个数字是 5 ,nums[3] 的最后一个数字是 4 。5 和 4 互质,因此 gcd(5,4) == 1 。 i = 2 和 j = 3 :nums[2] 的第一个数字是 1 ,nums[3] 的最后一个数字是 4 。1 和 4 互质,因此 gcd(1,4) == 1 。 因此,返回 5 。
示例 2:
输入:nums = [11,21,12] 输出:2 解释:共有 2 组美丽下标对: i = 0 和 j = 1 :nums[0] 的第一个数字是 1 ,nums[1] 的最后一个数字是 1 。gcd(1,1) == 1 。 i = 0 和 j = 2 :nums[0] 的第一个数字是 1 ,nums[2] 的最后一个数字是 2 。gcd(1,2) == 1 。 因此,返回 2 。
提示:
2 <= nums.length <= 100
1 <= nums[i] <= 9999
nums[i] % 10 != 0
解法
方法一:计数
我们可以用一个长度为 $10$ 的数组 $\textit{cnt}$ 来记录每个数字的第一个数字出现的次数。
遍历数组 $\textit{nums}$,对于每个数字 $x$,我们枚举 $0$ 到 $9$ 的每个数字 $y$,如果 $\textit{cnt}[y]$ 不为 $0$ 且 $\textit{gcd}(x b\mod 10, y) = 1$,则答案加上 $\textit{cnt}[y]$。然后,我们将 $x$ 的第一个数字出现的次数加 $1$。
遍历结束后,返回答案即可。
时间复杂度 $O(n \times (k + \log M))$,空间复杂度 $O(k + \log M)$。其中 $n$ 为数组 $\textit{nums}$ 的长度,而 $k$ 和 $M$ 分别表示数组 $\textit{nums}$ 中的数字的种类以及最大值。
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|